zoukankan      html  css  js  c++  java
  • ZROI#1014

    ZROI#1014

    ZROI#1014

    在某位置插入一个数,查询一段区间内所有数异或一个值之后的最大值,这看起来非常的数据结构,事实上这就是一道数据结构题...

    题解是怎样的的呢?

    (std) 是这种写法 (:) 对时间分块后用可持久化 (Trie) 树维护.

    不会,咋办?莫慌,我们有万能的 (vector).

    在位置 (pos) 插入一个数 (x)

    v.insert ( v.begin () + pos - 1 , x )
    

    (-1) 的原因是 (vector) 的下标从 (0) 开始.

    查询 ([l,r]) 中所有数异或一个 (x) 的最大值就 (:)

    for (vector < int > :: iterator it = v.begin () + l - 1 ; it != v.begin () + r ; ++ it)
        ans = max ( ans , ( *it ^ x ) ) ;
    

    为什么初始是 (v.begin () + l - 1) 而结束就是 (v.begin () + r) 呢?
    因为左闭右开,其实还是因为下标从 (0) 开始,一个道理.

    你可能疑惑,这怎么可能过啊,明明就是 (Theta(n^2)).

    确实...但 (vector) 谜一样速度谁也说不清...之前还有 (vector) 爆踩平衡树板子的操作呢.

    当然,这样做你要略微卡卡常.

    (Code:)

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize("Ofast")
    #pragma GCC optimize("inline")
    #pragma GCC optimize("-fgcse")
    #pragma GCC optimize("-fgcse-lm")
    #pragma GCC optimize("-fipa-sra")
    #pragma GCC optimize("-ftree-pre")
    #pragma GCC optimize("-ftree-vrp")
    #pragma GCC optimize("-fpeephole2")
    #pragma GCC optimize("-ffast-math")
    #pragma GCC optimize("-fsched-spec")
    #pragma GCC optimize("unroll-loops")
    #pragma GCC optimize("-falign-jumps")
    #pragma GCC optimize("-falign-loops")
    #pragma GCC optimize("-falign-labels")
    #pragma GCC optimize("-fdevirtualize")
    #pragma GCC optimize("-fcaller-saves")
    #pragma GCC optimize("-fcrossjumping")
    #pragma GCC optimize("-fthread-jumps")
    #pragma GCC optimize("-funroll-loops")
    #pragma GCC optimize("-fwhole-program")
    #pragma GCC optimize("-freorder-blocks")
    #pragma GCC optimize("-fschedule-insns")
    #pragma GCC optimize("inline-functions")
    #pragma GCC optimize("-ftree-tail-merge")
    #pragma GCC optimize("-fschedule-insns2")
    #pragma GCC optimize("-fstrict-aliasing")
    #pragma GCC optimize("-fstrict-overflow")
    #pragma GCC optimize("-falign-functions")
    #pragma GCC optimize("-fcse-skip-blocks")
    #pragma GCC optimize("-fcse-follow-jumps")
    #pragma GCC optimize("-fsched-interblock")
    #pragma GCC optimize("-fpartial-inlining")
    #pragma GCC optimize("no-stack-protector")
    #pragma GCC optimize("-freorder-functions")
    #pragma GCC optimize("-findirect-inlining")
    #pragma GCC optimize("-fhoist-adjacent-loads")
    #pragma GCC optimize("-frerun-cse-after-loop")
    #pragma GCC optimize("inline-small-functions")
    #pragma GCC optimize("-finline-small-functions")
    #pragma GCC optimize("-ftree-switch-conversion")
    #pragma GCC optimize("-foptimize-sibling-calls")
    #pragma GCC optimize("-fexpensive-optimizations")
    #pragma GCC optimize("-funsafe-loop-optimizations")
    #pragma GCC optimize("inline-functions-called-once")
    #pragma GCC optimize("-fdelete-null-pointer-checks")
    #include <algorithm>
    #include <iostream>
    #include <cstdlib>
    #include <cstring>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <queue>
    #include <cmath>
    #include <ctime>
    #include <map>
    #include <set>
    #define MEM(x,y) memset ( x , y , sizeof ( x ) )
    #define rep(i,a,b) for (int i = (a) ; i <= (b) ; ++ i)
    #define per(i,a,b) for (int i = (a) ; i >= (b) ; -- i)
    #define pii pair < int , int >
    #define one first
    #define two second
    #define rint read<int>
    #define LL long long
    #define pb push_back
    #define db double
    #define ull unsigned long long
    #define lowbit(x) ( x & ( - x ) )
    
    using std::queue ;
    using std::set ;
    using std::pair ;
    using std::max ;
    using std::min ;
    using std::priority_queue ;
    using std::vector ;
    using std::swap ;
    using std::sort ;
    using std::unique ;
    using std::greater ;
    
    struct ios {
        inline char gc(){
            static const int IN_LEN=1<<18|1;
            static char buf[IN_LEN],*s,*t;
            return (s==t)&&(t=(s=buf)+fread(buf,1,IN_LEN,stdin)),s==t?-1:*s++;
        }
    
        template <typename _Tp> inline ios & operator >> (_Tp&x){
            static char ch,sgn; ch = gc(), sgn = 0;
            for(;!isdigit(ch);ch=gc()){if(ch==-1)return *this;sgn|=ch=='-';}
            for(x=0;isdigit(ch);ch=gc())x=x*10+(ch^'0');
            sgn&&(x=-x); return *this;
        }
    } io ;
    
    const int inf = 0x7f7f7f7f ;
    
    vector < int > v ;
    
    int main () {
        int lastans = 0 , ans ;
        int T , x , y , k ;
        bool opt , online ;
        io >> T >> online ;
        while ( T -- ) {
            io >> opt >> x >> y ;
            if ( online ) { x ^= lastans ; y ^= lastans ; }
            if ( ! opt ) v.insert ( v.begin () + x - 1 , y ) ;
            else {
                io >> k ; ans = - inf ; if ( online ) k ^= lastans ;
                for (auto it = v.begin () + x - 1 ; it != v.begin () + y ; ++ it)
                    ans = max ( ans , (int)( *it ^ k ) ) ;
                printf ("%d
    " , lastans = ans ) ;
            }
        }
        return 0 ;
    }
    
  • 相关阅读:
    【Gym
    [matlab工具箱] 曲线拟合Curve Fitting
    数学建模 常用
    “这么多人给我作证,我不怕”
    超星尔雅刷课辅助
    细思《都挺好》
    P5173 传球
    [ICPC 北京 2017 J题]HihoCoder 1636 Pangu and Stones
    CF 1131C Birthday
    CF 634A Island Puzzle
  • 原文地址:https://www.cnblogs.com/Equinox-Flower/p/11719658.html
Copyright © 2011-2022 走看看