zoukankan      html  css  js  c++  java
  • tensorflow-用DASC结合Inception-v3对imagenet2012聚类实现

    一、目的

      以imagenet2012作为数据集,用Inception-v3对图像提取特征作为输入,来训练一个自编码器。

      以上作为预训练模型,随后在该自编码器的基础上,中间加入一个自表示层,将最终学习到的自表示层系数,作为相似度矩阵,对imagenet2012的1000类进行聚类。

    二、预训练

      1.原理

      inception-v3+自编码器

      2.代码 

      1 import tensorflow as tf
      2 import os
      3 import numpy as np
      4 import random
      5 import tensorflow.contrib.slim as slim
      6 import shutil
      7 
      8 tf.app.flags.DEFINE_string('model_dir', 'model/inception', 'Inception-v3 pretrain model dir')
      9 tf.app.flags.DEFINE_string('class_list', 'imagenet12/train_class_list.txt', 'ILSVRC2012 image class list')
     10 tf.app.flags.DEFINE_string('img_path', '/media/gpu/bdc7606d-0e3c-4870-9a5d-4926fd9961c0/gpu/Works/imagenet/others/ILSVRC2012_img_train', 'ILSVRC2012 image train path')
     11 tf.app.flags.DEFINE_integer('max_train_steps_pre', 200000, 'max train num')
     12 tf.app.flags.DEFINE_boolean('restore', True, 'wheather restore model and variable from previous saved')
     13 tf.app.flags.DEFINE_string('checkpoint_path', 'model/pre/', 'model saved path')
     14 tf.app.flags.DEFINE_string('feature_train_path','feature_train','ILSVRC2012 train feature save path')
     15 tf.app.flags.DEFINE_integer('large_multi', 100, 'enlarge the feature data')
     16 tf.app.flags.DEFINE_integer('width', 32, 'the width of feature input')
     17 tf.app.flags.DEFINE_integer('inception_out_size', 2048, 'the dim of feature input,inception out dim')
     18 tf.app.flags.DEFINE_integer('train_num_of_every_batch', 2000, 'change the data every 2000 epochs')
     19 FLAGS = tf.app.flags.FLAGS
     20 
     21 kernel_num_list = [16, 32, 64] #channel num
     22 kernel_size_list = [[3, 3], [3, 3], [3, 3]] #channel size
     23 kernel_stride_list = [2, 2, 2]    #stride
     24 batch_size = 500
     25 
     26 def get_inception_graph():
     27     '''
     28     load inception-v3 gragh for get_inception_output to
     29     get the feature from Inception-v3
     30     '''
     31     with tf.gfile.FastGFile(os.path.join(FLAGS.model_dir, 'inception-v3.pb'), 'rb') as f:
     32         graph_def = tf.GraphDef()
     33         graph_def.ParseFromString(f.read())
     34         inception_out = tf.import_graph_def(graph_def,name='',return_elements=['pool_3/_reshape:0'])
     35         return inception_out
     36 
     37 
     38 def create_graph_pre():
     39     '''
     40     create graph and loss
     41     '''
     42     inception_input = tf.placeholder(tf.float32, [None, FLAGS.width, FLAGS.inception_out_size/FLAGS.width, 1], name='inception_holder')
     43     with tf.variable_scope('DSC'):
     44         with tf.variable_scope('encoder'):
     45             net = slim.conv2d(inception_input, kernel_num_list[0], kernel_size_list[0], stride = kernel_stride_list[0], scope='conv_0')
     46             net = slim.conv2d(net, kernel_num_list[1], kernel_size_list[1], stride=kernel_stride_list[1], scope='conv_1')
     47             net = slim.conv2d(net, kernel_num_list[2], kernel_size_list[2], stride=kernel_stride_list[2], scope='conv_2')
     48 
     49         with tf.variable_scope('decoder'):
     50             net = slim.conv2d_transpose(net, kernel_num_list[1], kernel_size_list[2], stride=kernel_stride_list[2], scope='deconv_2')
     51             net = slim.conv2d_transpose(net, kernel_num_list[0], kernel_size_list[1], stride=kernel_stride_list[1], scope='deconv_1')
     52             net = slim.conv2d_transpose(net, 1, kernel_size_list[0], stride=kernel_stride_list[0], scope='deconv_0')
     53 
     54     restruct_loss = tf.losses.mean_squared_error(net, inception_input)
     55     return restruct_loss,inception_input,net
     56 
     57 
     58 def get_inception_output(sess, img, txt_name,inception_out,save):
     59     '''
     60     get the inception-v3 feature for img and save in txt_name
     61     '''
     62     image_data = tf.gfile.FastGFile(img, 'rb').read()
     63     output = sess.run(inception_out, feed_dict={'DecodeJpeg/contents:0': image_data})
     64     output = np.squeeze(output)
     65     output = output.reshape(FLAGS.width,-1)
     66     if save == True:
     67         np.savetxt(txt_name, output, fmt='%.6f')
     68     return output
     69 
     70 
     71 def get_inception_batch(sess,inception_out,save=True):
     72     '''
     73     get inception-v3 feature for a batch as input of the new graph(create_graph_pre)
     74     '''
     75     class_list = np.loadtxt(FLAGS.class_list, dtype= str)[0:batch_size]
     76     batch = []
     77 
     78     for i, item in enumerate(class_list):
     79         class_img_path = os.path.join(FLAGS.img_path, item)
     80         class_img_list = os.listdir(class_img_path)
     81 
     82         img_name = random.choice(class_img_list)
     83         txt_name = os.path.join(FLAGS.feature_train_path, item, img_name[:-4]+'txt')
     84         img = os.path.join(class_img_path, img_name)
     85 
     86         if os.path.exists(txt_name):
     87             print('%s Found!' % os.path.join(item, img_name[:-4]+'txt'))
     88             batch_i = np.loadtxt(txt_name)
     89         else:
     90             #print('%s Extracting!' % os.path.join(item, img_name[:-4]+'txt'))
     91             dir_name = os.path.join(FLAGS.feature_train_path, item)
     92             if not os.path.exists(dir_name):
     93                 os.makedirs(dir_name)
     94             batch_i = get_inception_output(sess, img,txt_name, inception_out,save=save)
     95         batch.append(batch_i)
     96     large_batch = np.array(batch) * FLAGS.large_multi
     97 
     98     return large_batch
     99 
    100 
    101 def reconstruct(sess,  net, img_inception):
    102     '''
    103     get the loss for the input(img_inception) to varify the result of reconstruct
    104     '''
    105     output = sess.run([net], feed_dict={'inception_holder:0': img_inception})
    106     img_inception=np.squeeze(img_inception)
    107     output=np.squeeze(np.array(output))
    108     test_loss = pow(img_inception-output,2)
    109    
    110     return output, sum(sum(test_loss))/(32*64)
    111 
    112 
    113 def interface_pre():
    114 
    115     total_loss, inception_input, net = create_graph_pre()
    116 
    117     global_step = tf.Variable(0)
    118     learning_rate = tf.train.exponential_decay(1e-3, global_step, decay_steps=100, decay_rate=0.98, staircase=True)
    119     train_op = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(total_loss)
    120 
    121     saver = tf.train.Saver(max_to_keep=3)
    122 
    123     with tf.Session() as sess:
    124 
    125         if FLAGS.restore:
    126             print('continue training from previous checkpoint')
    127             ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
    128             pre_step = int(ckpt.replace(FLAGS.checkpoint_path + '-', ''))
    129             saver.restore(sess, ckpt)
    130         else:
    131             #remove previous model
    132             if os.path.exists(FLAGS.checkpoint_path):
    133                 shutil.rmtree(FLAGS.checkpoint_path)
    134             os.makedirs(FLAGS.checkpoint_path)
    135             sess.run(tf.global_variables_initializer())
    136             pre_step = 0
    137 
    138         inception_out = get_inception_graph()
    139 
    140         for step in range(FLAGS.max_train_steps_pre):
    141             if step % FLAGS.train_num_of_every_batch == 0:
    142                 inception_output = get_inception_batch(sess, inception_out, save=False)
    143                 inception_output = inception_output.reshape(-1,inception_output.shape[1], inception_output.shape[2], 1)
    144             perm = np.arange(batch_size)
    145             np.random.shuffle(perm)
    146             inception_output = inception_output[perm]
    147 
    148             inception_output = inception_output.reshape(-1,inception_output.shape[1], inception_output.shape[2], 1)
    149             _, loss_value= sess.run([train_op, total_loss],feed_dict={'inception_holder:0':inception_output})
    150             if step % 100 == 0:
    151                 print("step %d :total_loss= %f" % (step, loss_value))
    152             if step % 500 == 0 and step > 0:
    153                 #  save model
    154                 if step > 500 :
    155                     write_meta_graph = False
    156                 else:
    157                     write_meta_graph = True
    158                 all_step = pre_step + step
    159                 saver.save(sess, FLAGS.checkpoint_path, global_step=all_step, write_meta_graph=write_meta_graph)
    160                 #construct
    161                 img_inception = get_inception_output(sess, 'cropped_panda.jpg', 'cropped_panda.txt',inception_out,False)
    162                 img_out, test_loss = reconstruct(sess, net, FLAGS.large_multi*img_inception.reshape(-1,32,64,1))
    163                 print("test loss= %.5f" % test_loss)
    164 
    165 if __name__ == '__main__':
    166     interface_pre()
    View Code

    三、训练

      1.原理

      以imagenet2012在inception-v3特征上的类平均向量作为输入,来训练模型,获得自表示系数作为聚类输入,从而获得聚类结果并可视化。

      2.代码  

      1 import tensorflow as tf
      2 import os
      3 import numpy as np
      4 import random
      5 import tensorflow.contrib.slim as slim
      6 import tensorflow.contrib.slim.nets as nets
      7 import shutil
      8 from scipy.sparse import coo_matrix
      9 from sklearn.cluster import spectral_clustering
     10 from scipy.sparse.linalg import svds
     11 from sklearn import cluster
     12 from sklearn.preprocessing import normalize
     13 
     14 tf.app.flags.DEFINE_string('class_list', '../imagenet12/train_class_list.txt', 'ILSVRC2012 image class list')
     15 tf.app.flags.DEFINE_string('img_path', '/media/gpu/bdc7606d-0e3c-4870-9a5d-4926fd9961c0/gpu/Works/imagenet/others/ILSVRC2012_img_train', 'ILSVRC2012 image train path')
     16 tf.app.flags.DEFINE_integer('max_train_steps', 200000, 'max train num')
     17 tf.app.flags.DEFINE_boolean('restore', False, 'wheather restore model and variable from previous saved')
     18 tf.app.flags.DEFINE_string('pretrain_path', '../model/pre/', 'pretrain model path')
     19 tf.app.flags.DEFINE_string('train_path', 'model/train/', 'train model path')
     20 tf.app.flags.DEFINE_string('Coef_path','Coef/','save path of self_express xishu')
     21 tf.app.flags.DEFINE_integer('large_multi', 100, '')
     22 tf.app.flags.DEFINE_integer('width', 32, '')
     23 tf.app.flags.DEFINE_integer('inception_out_size', 2048, '')
     24 tf.app.flags.DEFINE_float('self_express_loss_weight',1,'')
     25 tf.app.flags.DEFINE_float('regularizer_loss_weight',0.01,'')
     26 tf.app.flags.DEFINE_integer('train_num_of_every_batch', 5000, '')
     27 tf.app.flags.DEFINE_string('cluster_path','cluster','cluster result path')
     28 tf.app.flags.DEFINE_string('data_path','avg_train_vector','imagenet2012 average feature path')
     29 FLAGS = tf.app.flags.FLAGS
     30 
     31 kernel_num_list = [16, 32, 64]
     32 kernel_size_list = [[3, 3], [3, 3], [3, 3]]
     33 kernel_stride_list = [2, 2, 2]
     34 batch_size = 1000
     35 learn_rate=0.001
     36 
     37 
     38 def create_graph_pre():
     39 
     40     inception_input = tf.placeholder(tf.float32, [None, FLAGS.width, int(FLAGS.inception_out_size/FLAGS.width), 1], name='inception_holder')
     41     with tf.variable_scope('DSC'):
     42         with slim.arg_scope([slim.conv2d], weights_regularizer=slim.l2_regularizer(0.0005)):
     43             with tf.variable_scope('encoder'):
     44                 net = slim.conv2d(inception_input, kernel_num_list[0], kernel_size_list[0], stride = kernel_stride_list[0], scope='conv_0')
     45                 net = slim.conv2d(net, kernel_num_list[1], kernel_size_list[1], stride=kernel_stride_list[1], scope='conv_1')
     46                 net = slim.conv2d(net, kernel_num_list[2], kernel_size_list[2], stride=kernel_stride_list[2], scope='conv_2')
     47                 self_express_x = net
     48                 net = tf.reshape(net, [batch_size, -1], name='reshape_to_flat')
     49                 Coef = slim.model_variable('Coef',
     50                                        shape=[batch_size, batch_size],
     51                                        initializer=tf.truncated_normal_initializer(stddev=0.1),
     52                                        regularizer=slim.l2_regularizer(0.0005), trainable=True)
     53                 net = tf.matmul(Coef, net, name='mutmul')
     54 
     55             with tf.variable_scope('decoder'):
     56                 net = tf.reshape(net, [batch_size, int(FLAGS.width/8), int(FLAGS.inception_out_size/FLAGS.width/8), kernel_num_list[2]], name='reshape_to_normal')
     57                 self_express_x_c = net
     58                 net = slim.conv2d_transpose(net, kernel_num_list[1], kernel_size_list[2], stride=kernel_stride_list[2], scope='deconv_2')
     59                 net = slim.conv2d_transpose(net, kernel_num_list[0], kernel_size_list[1], stride=kernel_stride_list[1], scope='deconv_1')
     60                 net = slim.conv2d_transpose(net, 1, kernel_size_list[0], stride=kernel_stride_list[0], scope='deconv_0')
     61 
     62         reconstruct_loss = tf.losses.mean_squared_error(net, inception_input)
     63         self_express_loss = FLAGS.self_express_loss_weight *tf.losses.mean_squared_error(self_express_x, self_express_x_c)
     64         regularizer_loss = FLAGS.regularizer_loss_weight * tf.reduce_sum(tf.pow(Coef, 2.0))
     65         #regularizer_loss = tf.add_n(tf.losses.get_regularization_losses())
     66 
     67         loss = reconstruct_loss + self_express_loss + regularizer_loss
     68         #loss = self_express_loss
     69     return net, loss, Coef,reconstruct_loss, self_express_loss, regularizer_loss
     70 
     71 def get_inception_batch_avg():
     72     class_list = np.loadtxt(FLAGS.class_list, dtype=str)[0:batch_size]
     73     res=[]
     74     for i in range(len(class_list)):
     75         data_path = os.path.join(FLAGS.data_path,class_list[i]+'.txt')
     76         data = np.loadtxt(data_path)
     77         data = data.reshape(32,64)
     78         res.append(data*100)
     79     return np.array(res)
     80 
     81 def interface():
     82     net, total_loss, Coef, reconstruct_loss, self_express_loss, regularizer_loss = create_graph_pre()
     83 
     84     global_step = tf.Variable(0)
     85     learning_rate = tf.train.exponential_decay(1e-4, global_step, decay_steps=100, decay_rate=0.98, staircase=True)
     86 
     87     train_op = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(total_loss)
     88     saver = tf.train.Saver(max_to_keep=3)
     89     with tf.Session() as sess:
     90         if FLAGS.restore:
     91             print('continue training from previous checkpoint')
     92             ckpt = tf.train.latest_checkpoint(FLAGS.train_path)
     93             pre_step = int(ckpt.replace(FLAGS.train_path+'-', ''))
     94             saver.restore(sess, ckpt)
     95         else:
     96             # remove previous model and Coef
     97             if os.path.exists(FLAGS.train_path):
     98                 shutil.rmtree(FLAGS.train_path)
     99             if os.path.exists(FLAGS.Coef_path):
    100                 shutil.rmtree(FLAGS.Coef_path)
    101             os.makedirs(FLAGS.train_path)
    102             os.makedirs(FLAGS.Coef_path)
    103             # restore from pretrain
    104             sess.run(tf.global_variables_initializer())
    105             pre_step = 0
    106             ckpt = tf.train.latest_checkpoint(FLAGS.pretrain_path)
    107             variable_restore_op = slim.assign_from_checkpoint_fn(ckpt,slim.get_variables_to_restore(),ignore_missing_vars=True)
    108             variable_restore_op(sess)
    109 
    110         inception_out = get_inception_graph()
    111         inception_output = get_inception_batch_avg()
    112         inception_output = inception_output.reshape(-1, inception_output.shape[1], inception_output.shape[2], 1)
    113         for step in range(FLAGS.max_train_steps):
    114             _, loss_value, Coef_val, rec_val, see_val, reg_val= 
    115                 sess.run([train_op, total_loss, Coef, reconstruct_loss, self_express_loss, regularizer_loss],
    116                                               feed_dict={'inception_holder:0':inception_output})
    117             if step % 100 == 0:
    118                 print("step %d :total_loss= %f,rec_loss= %f,see_val=%f,reg_val=%f"
    119                       % (step,loss_value,rec_val, see_val,reg_val))
    120 
    121             if step % 1000 == 0 and step > 0:
    122                 if step > 500 :
    123                     write_meta_graph = False
    124                 else:
    125                     write_meta_graph = True
    126                 all_step = pre_step+step
    127                 saver.save(sess, FLAGS.train_path, global_step=all_step,write_meta_graph=write_meta_graph)
    128                 np.savetxt(FLAGS.Coef_path+str(all_step)+'.txt',Coef_val,fmt='%.6f')
    129                
    130 
    131 def thrC(C):
    132     row,col = C.shape
    133     for i in range(row):
    134         for j in range(col):
    135             C[i,j]=abs(C[i,j])
    136     return C
    137 
    138 
    139 def post_proC(C,N):
    140     # C: coefficient matrix
    141     C = 0.5 * (C + C.T)
    142     np.savetxt(FLAGS.cluster_path + 'C_abs.txt', C, fmt='%.6f')
    143     graph = coo_matrix(C)
    144     labels = spectral_clustering(graph, n_clusters=N)
    145     return labels
    146 
    147 def vis(N,labels):
    148     ## visual
    149     for i in range(N):
    150         print(i)
    151         index = [j for j in range(len(labels)) if labels[j]==i]
    152         class_list=np.loadtxt(FLAGS.class_list,dtype=str)
    153        
    154         sub_class_list = class_list[index]
    155         np.savetxt(os.path.join(FLAGS.cluster_path, str(i) + '.txt'), sub_class_list, fmt='%s')
    156         if vis:
    157             dir_path = os.path.join(FLAGS.cluster_path, str(i))
    158             if os.path.exists(dir_path):
    159                 shutil.rmtree(dir_path)
    160             os.makedirs(dir_path)
    161             # copy an example to dir_path
    162             for sub_class_item in sub_class_list:
    163                 img_path = os.path.join(FLAGS.img_path, sub_class_item)
    164                 random_img = random.choice(os.listdir(img_path))
    165                 src = os.path.join(img_path, random_img)
    166                 dst = os.path.join(dir_path, random_img)
    167                 
    168                 shutil.copyfile(src, dst)
    169 
    170 if __name__ == '__main__':
    171     interface()
    172 
    173     C=np.loadtxt('Coef/199000.txt') #系数,相似度矩阵
    174     C=thrC(C)
    175     N=32
    176     grp = post_proC(C,N)
    177 
    178     vis(N,grp)
    View Code
  • 相关阅读:
    VR全景项目外包团队— VR/AR相关领域介绍和VR全景案例
    虚拟现实外包公司— VR开发编辑器意义重大 印证VR不仅服务于用户
    全景VR视频游戏外包公司:技术分享使用U3D+CB制作VR游戏
    承接Unity3D外包公司 — 技术分享
    承接cardboard外包,unity3d外包(北京动软— 谷歌CARDBOARD真强大)
    VR外包团队:长年承接VR虚拟现实外包(应用、游戏、视频、漫游等)
    北京全景视频外包公司:长年承接VR全景视频外包
    北京VR视频外包团队:全景VR视频科普
    全景VR视频外包公司:长年承接VR全景视频外包(技术分享YouTube的360全景视频)
    Unity3D外包团队——技术分享U3D全景漫游(三)
  • 原文地址:https://www.cnblogs.com/EstherLjy/p/10087379.html
Copyright © 2011-2022 走看看