zoukankan      html  css  js  c++  java
  • 好题合辑

    1、AOPS论坛

    2、匈牙利语版本

    3、英文版本

    4、其它试题

    Suppose that $f: mathbb{R}^+ o mathbb{R}^+$ is a continuous function such that for all positive real numbers $x,y$ the following is true :
    $$(f(x)-f(y)) left ( f left ( frac{x+y}{2} ight ) - f ( sqrt{xy} ) ight )=0.$$
    Is it true that the only solution to this is the constant function ?
    陶哲轩解答:Yes.  If $f$ were not constant, then (since ${f R}^+$ is connected) it could not be locally constant, thus there exists $x_0 in {f R}^+$ such that $f$ is not constant in any neighbourhood of $x_0$.  By rescaling (replacing $f(x)$ with $f(x_0 x)$) we may assume without loss of generality that $x_0=1$.
     
    For any $y in {f R}^+$, there thus exists $x$ arbitrarily close to $1$ for which $f(x) eq f(y)$, hence $f((x+y)/2) = f(sqrt{xy})$.  By continuity, this implies that $f((1+y)/2) = f(sqrt{y})$ for all $y in {f R}^+$.  Making the substitution $z := (1+y)/2$, we conclude that $f(z) = f(g(z))$ for all $z in {f R}^+$, where $g(z) := sqrt{2z-1}$.  The function $g$ has the fixed point $z=1$ as an attractor, so on iteration and by using the continuity of $f$ we conclude that $f(z)=f(1)$ for all $z in {f R}^+$, so $f$ is indeed constant.
    来源:这里
    (1950年)令$a>0,d>0$,设$$ f(x)=frac{1}{a}+frac{x}{a(a+d)}+cdots+frac{x^n}{a(a+d)cdots(a+nd)}+cdots$$给出$f(x)$的封闭解.

    也就是求[sumlimits_{n = 0}^infty  {frac{{{x^n}}}{{prodlimits_{k = 0}^n {left( {a + kd} ight)} }}} .]

    解.首先有$$prod_{k=0}^n{frac{1}{a+kd}}=frac{Gamma left( frac{a}{d} ight)}{d^{n+1}Gamma left( frac{a}{d}+n+1 ight)},$$

    又因为$$gamma left( s,x ight) =sum_{k=0}^{infty}{frac{x^se^{-x}x^k}{sleft( s+1 ight) ...left( s+k ight)}}=x^s\,Gamma left( s ight) \,e^{-x}sum_{k=0}^{infty}{frac{x^k}{Gamma left( s+k+1 ight)}},$$我们有

    egin{align*}sum_{n=0}^{infty}{frac{x^n}{prodlimits_{k=0}^n{left( a+kd ight)}}}&=frac{Gamma left( frac{a}{d} ight)}{d}sum_{n=0}^{infty}{frac{left( x/d ight) ^n}{Gamma left( frac{a}{d}+n+1 ight)}}\&=frac{Gamma left( frac{a}{d} ight)}{d}gamma left( frac{a}{d},frac{x}{d} ight) left( frac{d}{x} ight) ^{a/d}frac{e^{x/d}}{Gamma left( frac{a}{d} ight)}=left( frac{d}{x} ight) ^{a/d}frac{e^{x/d}}{d}gamma left( frac{a}{d},frac{x}{d} ight) ,end{align*}
    其中$displaystyleGamma(s,x) = int_x^{infty} t^{s-1}\,e^{-t}\,{ m d}t$为the upper incomplete gamma function,而$displaystylegamma(s,x) = int_0^x t^{s-1}\,e^{-t}\,{ m d}t$为the lower incomplete gamma function.参考这里.

    $g(x) = x^a f(x^d)$ satifies $g'(x) = x^{a-1} + x^{d-1} g(x)$. Solve the associated differential equation and conclude.


    令$ain (0,pi)$,设$n$为正整数.证明$$int_0^{pi}{frac{cos left( nx ight) -cos left( na ight)}{cos x-cos a}dx}=pi frac{sin left( na ight)}{sin a}.$$

    求$$int_1^{frac{sqrt{5}+1}{2}}{left( frac{arctan x}{arctan x-x} ight) ^2dx},$$
    $$int_0^1{frac{arctan x}{xsqrt{1-x^2}}dx}.$$

    Let $n$ be a positive integer. Prove that, for $0<x<fracpi{n+1}$,
    $$sin{x}-frac{sin{2x}}{2}+cdots+(-1)^{n+1}frac{sin{nx}}{n}-frac{x}{2}$$
    is positive if $n$ is odd and negative if $n$ is even.

    Since

    egin{align*}f_n(x) &= sin{x} - frac {sin{2x}}{2} + cdots + ( - 1)^{n + 1}frac {sin{nx}}{n} - frac {x}{2},\f_n'(x) &= - mbox{Re}left(sum_{n = 1}^{n}z^n ight) - frac12.end{align*}
     
    After some simplifications we get
    $$ f_n'(x) = frac {( - 1)^{n + 1}}{2}((1 - cos(x))frac {sin((n + 1)x)}{sin(x)} + cos((n + 1)x))$$
    and $$ f_n''(x) = frac {( - 1)^{n}}{2}frac {(n + 1)sin(nx) + nsin((n + 1)x)}{1 + cos(x)}.$$
    The formula for $ f_n''$ shows that $ ( - 1)^n f$ is convex for $ 0 < x < frac {pi}{n + 1}$. Since $ f_n(0) = 0$ and $ f_n'(0) = frac {( - 1)^{n + 1}}{2}$.We are ready when we can show that $ ( - 1)^{n + 1}f_n(frac {pi}{n + 1}) > 0$.
     
    We have to distinct between two different, but very similar cases, namely $ n$ is odd, and $ n$ is even.
    Let's restrict to the case $ n$ is even.
    We prove $ f_{2n}(frac {pi}{2n + 1}) < 0$.
     
    egin{align*}f_{2n}left( frac{pi}{2n+1} ight) &=sum_{k=1}^{2n}{left( -1 ight)}^{k+1}frac{sin left( frac{kpi}{2n+1} ight)}{k}-frac{pi}{2left( 2n+1 ight)}\&=frac{pi}{2n+1}left( sum_{k=1}^n{frac{sin left( frac{left( 2k-1 ight) pi}{2n+1} ight)}{frac{left( 2k-1 ight) pi}{2n+1}}}-sum_{k=1}^n{frac{sin left( frac{2kpi}{2n+1} ight)}{frac{2kpi}{2n+1}}} ight) -frac{pi}{2left( 2n+1 ight)}.end{align*}
     
    The function $ x mapsto frac {sin(x)}{x}$ is descending on $ [0,pi]$, thus
    both sums lay between $ a$ and $ a + frac {2pi}{2n + 1}$, where $ a = int_0^{pi}frac {sin(x)}{x}\,dx$.

    Thus $$ f_{2n}left(frac {pi}{2n + 1} ight) < frac {pi}{2n + 1}cdotfrac {2pi}{2n + 1} - frac {pi}{2(2n + 1)} < 0.$$

     [int e^xfrac{1+sin x}{1+cos x}dx,quad int_{frac{1}{2}}^{2}left(1+x-frac{1}{x} ight) e^{x+frac{1}{x}} d x]
  • 相关阅读:
    nginx-1.8.1的安装
    ElasticSearch 在3节点集群的启动
    The type java.lang.CharSequence cannot be resolved. It is indirectly referenced from required .class files
    sqoop导入导出对mysql再带数据库test能跑通用户自己建立的数据库则不行
    LeetCode 501. Find Mode in Binary Search Tree (找到二叉搜索树的众数)
    LeetCode 437. Path Sum III (路径之和之三)
    LeetCode 404. Sum of Left Leaves (左子叶之和)
    LeetCode 257. Binary Tree Paths (二叉树路径)
    LeetCode Questions List (LeetCode 问题列表)- Java Solutions
    LeetCode 561. Array Partition I (数组分隔之一)
  • 原文地址:https://www.cnblogs.com/Eufisky/p/11229174.html
Copyright © 2011-2022 走看看