zoukankan      html  css  js  c++  java
  • Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,sinh)

    0.1Bearbeiten
    {displaystyle int _{-infty }^{infty }{frac {1}{1+x^{2}}}\,{frac {x}{sinh pi x}}\,dx=2log 2-1}{displaystyle int _{-infty }^{infty }{frac {1}{1+x^{2}}}\,{frac {x}{sinh pi x}}\,dx=2log 2-1}
    ohne Beweis (Abels Integral)
     
    1.1Bearbeiten
    {displaystyle int _{-infty }^{infty }{frac {x^{n-1}}{sinh x}}\,dx={frac {2^{n}(2^{n}-1)|B_{n}|}{n}};{frac {pi ^{n}}{2^{n-1}}}qquad nin mathbb {Z} ^{geq 2}}{displaystyle int _{-infty }^{infty }{frac {x^{n-1}}{sinh x}}\,dx={frac {2^{n}(2^{n}-1)|B_{n}|}{n}};{frac {pi ^{n}}{2^{n-1}}}qquad nin mathbb {Z} ^{geq 2}}
    ohne Beweis
     
    1.2Bearbeiten
    {displaystyle int _{0}^{infty }{frac {x^{alpha -1}}{sinh x}}\,dx=2\,Gamma (alpha )\,lambda (alpha )qquad { ext{Re}}(alpha )>1}{displaystyle int _{0}^{infty }{frac {x^{alpha -1}}{sinh x}}\,dx=2\,Gamma (alpha )\,lambda (alpha )qquad {	ext{Re}}(alpha )>1}
    Beweis

    Für {displaystyle x>0\,}x>0\, ist {displaystyle {frac {1}{sinh x}}={frac {2}{e^{x}-e^{-x}}}=2e^{-x}{frac {1}{1-e^{-2x}}}=2e^{-x}sum _{k=0}^{infty }e^{-2kx}=2sum _{k=0}^{infty }e^{-(2k+1)x}}{displaystyle {frac {1}{sinh x}}={frac {2}{e^{x}-e^{-x}}}=2e^{-x}{frac {1}{1-e^{-2x}}}=2e^{-x}sum _{k=0}^{infty }e^{-2kx}=2sum _{k=0}^{infty }e^{-(2k+1)x}}.

    Also ist {displaystyle {frac {x^{alpha -1}}{sinh x}}=2sum _{k=0}^{infty }x^{alpha -1}\,e^{-(2k+1)x}}{displaystyle {frac {x^{alpha -1}}{sinh x}}=2sum _{k=0}^{infty }x^{alpha -1}\,e^{-(2k+1)x}} und somit ist

    {displaystyle int _{0}^{infty }{frac {x^{alpha -1}}{sinh x}}\,dx=2sum _{k=0}^{infty }int _{0}^{infty }x^{alpha -1}\,e^{-(2k+1)x}\,dx=2sum _{k=0}^{infty }{frac {Gamma (alpha )}{(2k+1)^{alpha }}}=2\,Gamma (alpha )\,lambda (alpha )}{displaystyle int _{0}^{infty }{frac {x^{alpha -1}}{sinh x}}\,dx=2sum _{k=0}^{infty }int _{0}^{infty }x^{alpha -1}\,e^{-(2k+1)x}\,dx=2sum _{k=0}^{infty }{frac {Gamma (alpha )}{(2k+1)^{alpha }}}=2\,Gamma (alpha )\,lambda (alpha )}.

     
    1.3Bearbeiten
    {displaystyle int _{0}^{infty }{frac {x^{alpha -1}}{sinh ^{2}x}}\,dx={frac {Gamma (alpha )\,zeta (alpha -1)}{2^{alpha -2}}}qquad { ext{Re}}(alpha )>2}{displaystyle int _{0}^{infty }{frac {x^{alpha -1}}{sinh ^{2}x}}\,dx={frac {Gamma (alpha )\,zeta (alpha -1)}{2^{alpha -2}}}qquad {	ext{Re}}(alpha )>2}
    Beweis

    Für {displaystyle x>0\,}x>0\, ist {displaystyle {frac {1}{sinh ^{2}x}}={frac {4}{(e^{x}-e^{-x})^{2}}}={frac {4\,e^{-2x}}{(1-e^{-2x})^{2}}}=4sum _{k=1}^{infty }k\,e^{-2kx}}{displaystyle {frac {1}{sinh ^{2}x}}={frac {4}{(e^{x}-e^{-x})^{2}}}={frac {4\,e^{-2x}}{(1-e^{-2x})^{2}}}=4sum _{k=1}^{infty }k\,e^{-2kx}}.

    Also ist {displaystyle int _{0}^{infty }{frac {x^{alpha -1}}{sinh ^{2}x}}\,dx=4sum _{k=1}^{infty }kint _{0}^{infty }x^{alpha -1}\,e^{-2kx}\,dx=4sum _{k=1}^{infty }k\,{frac {Gamma (alpha )}{(2k)^{alpha }}}={frac {Gamma (alpha )\,zeta (alpha -1)}{2^{alpha -2}}}}{displaystyle int _{0}^{infty }{frac {x^{alpha -1}}{sinh ^{2}x}}\,dx=4sum _{k=1}^{infty }kint _{0}^{infty }x^{alpha -1}\,e^{-2kx}\,dx=4sum _{k=1}^{infty }k\,{frac {Gamma (alpha )}{(2k)^{alpha }}}={frac {Gamma (alpha )\,zeta (alpha -1)}{2^{alpha -2}}}}.

     
    1.4Bearbeiten
    {displaystyle int _{-infty }^{infty }{frac {sinh alpha x}{sinh x}}\,dx=pi \, an left({frac {alpha pi }{2}} ight)qquad -1<mathrm {Re} (alpha )<1}{displaystyle int _{-infty }^{infty }{frac {sinh alpha x}{sinh x}}\,dx=pi \,	an left({frac {alpha pi }{2}}
ight)qquad -1<mathrm {Re} (alpha )<1}
    Beweis

    {displaystyle int _{-infty }^{infty }{frac {sinh alpha x}{sinh x}}\,dx}{displaystyle int _{-infty }^{infty }{frac {sinh alpha x}{sinh x}}\,dx}   {displaystyle =2int _{0}^{infty }{frac {e^{alpha x}-e^{-alpha x}}{e^{x}-e^{-x}}}\,dx=psi left({frac {1+alpha }{2}} ight)-psi left({frac {1-alpha }{2}} ight)}{displaystyle =2int _{0}^{infty }{frac {e^{alpha x}-e^{-alpha x}}{e^{x}-e^{-x}}}\,dx=psi left({frac {1+alpha }{2}}
ight)-psi left({frac {1-alpha }{2}}
ight)}   {displaystyle =pi \, an left({frac {alpha pi }{2}} ight)}{displaystyle =pi \,	an left({frac {alpha pi }{2}}
ight)}

     
    1.5Bearbeiten
    {displaystyle int _{-infty }^{infty }{frac {sinh alpha x}{sinh pi x}}\,{frac {1}{1+x^{2}}}\,dx=-alpha \,cos alpha +2sin alpha \,log left(2\,cos {frac {alpha }{2}} ight)qquad -pi <mathrm {Re} (alpha )<pi }{displaystyle int _{-infty }^{infty }{frac {sinh alpha x}{sinh pi x}}\,{frac {1}{1+x^{2}}}\,dx=-alpha \,cos alpha +2sin alpha \,log left(2\,cos {frac {alpha }{2}}
ight)qquad -pi <mathrm {Re} (alpha )<pi }
    Beweis

    {displaystyle y(alpha ):=int _{-infty }^{infty }{frac {sinh alpha x}{sinh pi x}}\,{frac {1}{1+x^{2}}}\,dx}{displaystyle y(alpha ):=int _{-infty }^{infty }{frac {sinh alpha x}{sinh pi x}}\,{frac {1}{1+x^{2}}}\,dx}

    {displaystyle Rightarrow y''(alpha )+y(alpha )=int _{-infty }^{infty }{frac {sinh alpha x}{sinh pi x}}\,dx= an {frac {alpha }{2}}}{displaystyle Rightarrow y''(alpha )+y(alpha )=int _{-infty }^{infty }{frac {sinh alpha x}{sinh pi x}}\,dx=	an {frac {alpha }{2}}}

    mit {displaystyle y(0)=0\,}{displaystyle y(0)=0\,} und {displaystyle y'(0)=int _{-infty }^{infty }{frac {1}{sinh pi x}}\,{frac {x}{1+x^{2}}}\,dx=-1+2log 2}{displaystyle y'(0)=int _{-infty }^{infty }{frac {1}{sinh pi x}}\,{frac {x}{1+x^{2}}}\,dx=-1+2log 2}.


    Ansatz (Variation der Konstante):

    {displaystyle y(x)=c(x)sin x+d(x)cos x\,}{displaystyle y(x)=c(x)sin x+d(x)cos x\,}

    {displaystyle y'(x)=c(x)cos x-d(x)sin x+underbrace {c'(x)sin x+d'(x)cos x} _{=0\,{ ext{(Forderung)}}}}{displaystyle y'(x)=c(x)cos x-d(x)sin x+underbrace {c'(x)sin x+d'(x)cos x} _{=0\,{	ext{(Forderung)}}}}

    {displaystyle y''(x)=-c(x)sin x-d(x)cos x+c'(x)cos x-d'(x)sin x\,}{displaystyle y''(x)=-c(x)sin x-d(x)cos x+c'(x)cos x-d'(x)sin x\,}

    Also ist {displaystyle y''(x)+y(x)=c'(x)cos x-d'(x)sin x= an {frac {x}{2}}}{displaystyle y''(x)+y(x)=c'(x)cos x-d'(x)sin x=	an {frac {x}{2}}} und {displaystyle c'(x)sin x+d'(x)cos x=0\,}{displaystyle c'(x)sin x+d'(x)cos x=0\,}.

    {displaystyle {egin{pmatrix}cos x&-sin x\sin x&cos xend{pmatrix}}{egin{pmatrix}c'(x)\d'(x)end{pmatrix}}={egin{pmatrix} an {frac {x}{2}}\0end{pmatrix}}}{displaystyle {egin{pmatrix}cos x&-sin x\sin x&cos xend{pmatrix}}{egin{pmatrix}c'(x)\d'(x)end{pmatrix}}={egin{pmatrix}	an {frac {x}{2}}\0end{pmatrix}}}

    {displaystyle Rightarrow {egin{pmatrix}c'(x)\d'(x)end{pmatrix}}={egin{pmatrix}cos x&sin x\-sin x&cos xend{pmatrix}}{egin{pmatrix} an {frac {x}{2}}\0end{pmatrix}}={egin{pmatrix}cos x\,\, an {frac {x}{2}}\-sin x\,\, an {frac {x}{2}}end{pmatrix}}}{displaystyle Rightarrow {egin{pmatrix}c'(x)\d'(x)end{pmatrix}}={egin{pmatrix}cos x&sin x\-sin x&cos xend{pmatrix}}{egin{pmatrix}	an {frac {x}{2}}\0end{pmatrix}}={egin{pmatrix}cos x\,\,	an {frac {x}{2}}\-sin x\,\,	an {frac {x}{2}}end{pmatrix}}}

    {displaystyle Rightarrow {egin{pmatrix}c(x)\d(x)end{pmatrix}}={egin{pmatrix}-cos x+2log left(2cos {frac {x}{2}} ight)\sin x-xend{pmatrix}}}{displaystyle Rightarrow {egin{pmatrix}c(x)\d(x)end{pmatrix}}={egin{pmatrix}-cos x+2log left(2cos {frac {x}{2}}
ight)\sin x-xend{pmatrix}}}, wegen {displaystyle {egin{pmatrix}c(0)\d(0)end{pmatrix}}={egin{pmatrix}y'(0)\y(0)end{pmatrix}}={egin{pmatrix}-1+2log 2\0end{pmatrix}}}{displaystyle {egin{pmatrix}c(0)\d(0)end{pmatrix}}={egin{pmatrix}y'(0)\y(0)end{pmatrix}}={egin{pmatrix}-1+2log 2\0end{pmatrix}}}.

    Somit ist {displaystyle y(x)=left[-cos x+2log left(2cos {frac {x}{2}} ight) ight]sin x+(sin x-x)cos x=-xcos x+2sin x\,log left(2cos {frac {x}{2}} ight)}{displaystyle y(x)=left[-cos x+2log left(2cos {frac {x}{2}}
ight)
ight]sin x+(sin x-x)cos x=-xcos x+2sin x\,log left(2cos {frac {x}{2}}
ight)}.

     
    2.1Bearbeiten
    {displaystyle int _{-infty }^{infty }{frac {x}{sinh alpha pi x}}\,{frac {1}{x^{2}+eta ^{2}}}\,dx=-{frac {1}{alpha eta }}+psi left({frac {alpha eta }{2}}+{frac {1}{2}} ight)-psi left({frac {alpha eta }{2}} ight)qquad { ext{Re}}(alpha )\,,\,{ ext{Re}}(eta )>0}{displaystyle int _{-infty }^{infty }{frac {x}{sinh alpha pi x}}\,{frac {1}{x^{2}+eta ^{2}}}\,dx=-{frac {1}{alpha eta }}+psi left({frac {alpha eta }{2}}+{frac {1}{2}}
ight)-psi left({frac {alpha eta }{2}}
ight)qquad {	ext{Re}}(alpha )\,,\,{	ext{Re}}(eta )>0}
    ohne Beweis
  • 相关阅读:
    tableView滑动时cell消失
    收集别人写的很好的关于多线程的文章
    scroll或是其子类被添加进view时,界面自动上移
    runtime之实现对象序列化
    runtime之方法的交换
    升级mac中的系统之后,给PHP安装扩展常出现问题
    ubuntu下搭建Scrapy框架简单办法
    CuDA的快速下载链接
    windows下Scrapy爬虫框架环境搭建
    windows下安装pywin32报错:close failed in file object destructor:sys.excepthook is missing lost sys.stderr
  • 原文地址:https://www.cnblogs.com/Eufisky/p/14730798.html
Copyright © 2011-2022 走看看