zoukankan      html  css  js  c++  java
  • Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,arcsin)

    0.1Bearbeiten
    {displaystyle int _{0}^{1}{frac {arcsin x}{x}}\,dx={frac {pi }{2}}\,log 2}{displaystyle int _{0}^{1}{frac {arcsin x}{x}}\,dx={frac {pi }{2}}\,log 2}
    Beweis

    {displaystyle int _{0}^{1}{frac {arcsin x}{x}}\,dx}{displaystyle int _{0}^{1}{frac {arcsin x}{x}}\,dx} ist nach der Substitution {displaystyle xmapsto sin x}{displaystyle xmapsto sin x} gleich {displaystyle int _{0}^{frac {pi }{2}}{frac {x}{sin x}}\,cos x\,dx=int _{0}^{frac {pi }{2}}x\,cot x\,dx}{displaystyle int _{0}^{frac {pi }{2}}{frac {x}{sin x}}\,cos x\,dx=int _{0}^{frac {pi }{2}}x\,cot x\,dx}.

    Und das ist nach partieller Integration {displaystyle underbrace {{Big [}xlog(sin x){Big ]}_{0}^{frac {pi }{2}}} _{=0}-int _{0}^{frac {pi }{2}}log(sin x)\,dx={frac {pi }{2}}\,log 2}{displaystyle underbrace {{Big [}xlog(sin x){Big ]}_{0}^{frac {pi }{2}}} _{=0}-int _{0}^{frac {pi }{2}}log(sin x)\,dx={frac {pi }{2}}\,log 2}.

     
    0.2Bearbeiten
    {displaystyle int _{0}^{1}left({frac {arcsin x}{x}} ight)^{2}dx=4\,G-{frac {pi ^{2}}{4}}}{displaystyle int _{0}^{1}left({frac {arcsin x}{x}}
ight)^{2}dx=4\,G-{frac {pi ^{2}}{4}}}
    Beweis

    {displaystyle int _{0}^{1}left({frac {arcsin x}{x}} ight)^{2}\,dx}{displaystyle int _{0}^{1}left({frac {arcsin x}{x}}
ight)^{2}\,dx} ist nach der Substitution {displaystyle xmapsto sin x}{displaystyle xmapsto sin x} gleich {displaystyle int _{0}^{frac {pi }{2}}{frac {x^{2}}{sin ^{2}x}}\,cos x\,dx}{displaystyle int _{0}^{frac {pi }{2}}{frac {x^{2}}{sin ^{2}x}}\,cos x\,dx}.

    Und das ist nach partieller Integration {displaystyle underbrace {left[x^{2}\,{frac {-1}{sin x}} ight]_{0}^{frac {pi }{2}}} _{-{frac {pi ^{2}}{4}}}+2underbrace {int _{0}^{frac {pi }{2}}{frac {x}{sin x}}\,dx} _{2G}=4G-{frac {pi ^{2}}{4}}}{displaystyle underbrace {left[x^{2}\,{frac {-1}{sin x}}
ight]_{0}^{frac {pi }{2}}} _{-{frac {pi ^{2}}{4}}}+2underbrace {int _{0}^{frac {pi }{2}}{frac {x}{sin x}}\,dx} _{2G}=4G-{frac {pi ^{2}}{4}}}.

     
    0.3Bearbeiten
    {displaystyle int _{0}^{1}left({frac {arcsin x}{x}} ight)^{3}dx={frac {3pi }{2}}log 2-{frac {pi ^{3}}{16}}}{displaystyle int _{0}^{1}left({frac {arcsin x}{x}}
ight)^{3}dx={frac {3pi }{2}}log 2-{frac {pi ^{3}}{16}}}
    Beweis

    {displaystyle I:=int _{0}^{1}left({frac {arcsin x}{x}} ight)^{3}dx}{displaystyle I:=int _{0}^{1}left({frac {arcsin x}{x}}
ight)^{3}dx} ist nach Substitution {displaystyle xmapsto sin x}{displaystyle xmapsto sin x} gleich {displaystyle int _{0}^{frac {pi }{2}}x^{3}\,{frac {cos x}{sin ^{3}x}}\,dx}{displaystyle int _{0}^{frac {pi }{2}}x^{3}\,{frac {cos x}{sin ^{3}x}}\,dx}.

    Das ist nach partieller Integration {displaystyle left[x^{3}\,{frac {-1}{2sin ^{2}x}} ight]_{0}^{frac {pi }{2}}+int _{0}^{frac {pi }{2}}3x^{2}\,{frac {1}{2\,sin ^{2}x}}\,dx=-{frac {pi ^{3}}{16}}+{frac {3}{2}}int _{0}^{frac {pi }{2}}x^{2}\,{frac {1}{sin ^{2}x}}\,dx}{displaystyle left[x^{3}\,{frac {-1}{2sin ^{2}x}}
ight]_{0}^{frac {pi }{2}}+int _{0}^{frac {pi }{2}}3x^{2}\,{frac {1}{2\,sin ^{2}x}}\,dx=-{frac {pi ^{3}}{16}}+{frac {3}{2}}int _{0}^{frac {pi }{2}}x^{2}\,{frac {1}{sin ^{2}x}}\,dx}.

    Nach wiederholter partieller Integration ist dabei {displaystyle int _{0}^{frac {pi }{2}}x^{2}\,{frac {1}{sin ^{2}x}}\,dx=underbrace {left[-x^{2}\,cot x ight]_{0}^{frac {pi }{2}}} _{=0}+int _{0}^{frac {pi }{2}}2xcot x\,dx}{displaystyle int _{0}^{frac {pi }{2}}x^{2}\,{frac {1}{sin ^{2}x}}\,dx=underbrace {left[-x^{2}\,cot x
ight]_{0}^{frac {pi }{2}}} _{=0}+int _{0}^{frac {pi }{2}}2xcot x\,dx}

    {displaystyle =underbrace {{Big [}2x\,log(sin x){Big ]}_{0}^{frac {pi }{2}}} _{=0}-2int _{0}^{frac {pi }{2}}log(sin x)\,dx=pi log 2}{displaystyle =underbrace {{Big [}2x\,log(sin x){Big ]}_{0}^{frac {pi }{2}}} _{=0}-2int _{0}^{frac {pi }{2}}log(sin x)\,dx=pi log 2}. Also ist {displaystyle I=-{frac {pi ^{3}}{16}}+{frac {3}{2}}\,pi \,log 2}{displaystyle I=-{frac {pi ^{3}}{16}}+{frac {3}{2}}\,pi \,log 2}.

     
    2.1Bearbeiten
    {displaystyle int _{0}^{1}{frac {arcsin {sqrt {x}}}{1-left(2sin {frac {alpha }{2}} ight)^{2}\,x\,(1-x)}}\,dx={frac {pi }{4}}\,{frac {alpha }{sin alpha }}qquad -pi <alpha <pi }{displaystyle int _{0}^{1}{frac {arcsin {sqrt {x}}}{1-left(2sin {frac {alpha }{2}}
ight)^{2}\,x\,(1-x)}}\,dx={frac {pi }{4}}\,{frac {alpha }{sin alpha }}qquad -pi <alpha <pi }
    Beweis

    Nach Substitution {displaystyle xmapsto 1-x}{displaystyle xmapsto 1-x} lässt sich das Integral auch schreiben als {displaystyle int _{0}^{1}{frac {arcsin {sqrt {1-x}}}{1-left(2sin {frac {alpha }{2}} ight)^{2}\,x\,(1-x)}}\,dx}{displaystyle int _{0}^{1}{frac {arcsin {sqrt {1-x}}}{1-left(2sin {frac {alpha }{2}}
ight)^{2}\,x\,(1-x)}}\,dx}.

    Addiert man beide Darstellungen, so ist {displaystyle 2I=int _{0}^{1}{frac {arcsin {sqrt {x}}+arcsin {sqrt {1-x}}}{1-left(2sin {frac {alpha }{2}} ight)^{2}\,x\,(1-x)}}\,dx}{displaystyle 2I=int _{0}^{1}{frac {arcsin {sqrt {x}}+arcsin {sqrt {1-x}}}{1-left(2sin {frac {alpha }{2}}
ight)^{2}\,x\,(1-x)}}\,dx}. Der Zähler ist konstant {displaystyle {frac {pi }{2}}}{frac  {pi }{2}}.

    Somit ist {displaystyle I={frac {pi }{4}}int _{0}^{1}{frac {1}{1-left(2sin {frac {alpha }{2}} ight)^{2}\,x\,(1-x)}}\,dx={frac {pi }{4}}left[{frac {1}{sin alpha }}arctan left((2x-1)\, an {frac {alpha }{2}} ight) ight]_{0}^{1}={frac {pi }{4}}\,{frac {alpha }{sin alpha }}}{displaystyle I={frac {pi }{4}}int _{0}^{1}{frac {1}{1-left(2sin {frac {alpha }{2}}
ight)^{2}\,x\,(1-x)}}\,dx={frac {pi }{4}}left[{frac {1}{sin alpha }}arctan left((2x-1)\,	an {frac {alpha }{2}}
ight)
ight]_{0}^{1}={frac {pi }{4}}\,{frac {alpha }{sin alpha }}}.

  • 相关阅读:
    Call KernelIoControl in user space in WINCE6.0
    HOW TO:手工删除OCS在AD中的池和其他属性
    关于新版Windows Server 2003 Administration Tools Pack
    关于SQL2008更新一则
    微软发布3款SQL INJECTION攻击检测工具
    HyperV RTM!
    OCS 2007 聊天记录查看工具 OCSMessage
    CoreConfigurator 图形化的 Server Core 配置管理工具
    OC 2007 ADM 管理模板和Live Meeting 2007 ADM 管理模板发布
    Office Communications Server 2007 R2 即将发布
  • 原文地址:https://www.cnblogs.com/Eufisky/p/14730800.html
Copyright © 2011-2022 走看看