zoukankan      html  css  js  c++  java
  • Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,arcsin)

    0.1Bearbeiten
    {displaystyle int _{0}^{1}{frac {arcsin x}{x}}\,dx={frac {pi }{2}}\,log 2}{displaystyle int _{0}^{1}{frac {arcsin x}{x}}\,dx={frac {pi }{2}}\,log 2}
    Beweis

    {displaystyle int _{0}^{1}{frac {arcsin x}{x}}\,dx}{displaystyle int _{0}^{1}{frac {arcsin x}{x}}\,dx} ist nach der Substitution {displaystyle xmapsto sin x}{displaystyle xmapsto sin x} gleich {displaystyle int _{0}^{frac {pi }{2}}{frac {x}{sin x}}\,cos x\,dx=int _{0}^{frac {pi }{2}}x\,cot x\,dx}{displaystyle int _{0}^{frac {pi }{2}}{frac {x}{sin x}}\,cos x\,dx=int _{0}^{frac {pi }{2}}x\,cot x\,dx}.

    Und das ist nach partieller Integration {displaystyle underbrace {{Big [}xlog(sin x){Big ]}_{0}^{frac {pi }{2}}} _{=0}-int _{0}^{frac {pi }{2}}log(sin x)\,dx={frac {pi }{2}}\,log 2}{displaystyle underbrace {{Big [}xlog(sin x){Big ]}_{0}^{frac {pi }{2}}} _{=0}-int _{0}^{frac {pi }{2}}log(sin x)\,dx={frac {pi }{2}}\,log 2}.

     
    0.2Bearbeiten
    {displaystyle int _{0}^{1}left({frac {arcsin x}{x}} ight)^{2}dx=4\,G-{frac {pi ^{2}}{4}}}{displaystyle int _{0}^{1}left({frac {arcsin x}{x}}
ight)^{2}dx=4\,G-{frac {pi ^{2}}{4}}}
    Beweis

    {displaystyle int _{0}^{1}left({frac {arcsin x}{x}} ight)^{2}\,dx}{displaystyle int _{0}^{1}left({frac {arcsin x}{x}}
ight)^{2}\,dx} ist nach der Substitution {displaystyle xmapsto sin x}{displaystyle xmapsto sin x} gleich {displaystyle int _{0}^{frac {pi }{2}}{frac {x^{2}}{sin ^{2}x}}\,cos x\,dx}{displaystyle int _{0}^{frac {pi }{2}}{frac {x^{2}}{sin ^{2}x}}\,cos x\,dx}.

    Und das ist nach partieller Integration {displaystyle underbrace {left[x^{2}\,{frac {-1}{sin x}} ight]_{0}^{frac {pi }{2}}} _{-{frac {pi ^{2}}{4}}}+2underbrace {int _{0}^{frac {pi }{2}}{frac {x}{sin x}}\,dx} _{2G}=4G-{frac {pi ^{2}}{4}}}{displaystyle underbrace {left[x^{2}\,{frac {-1}{sin x}}
ight]_{0}^{frac {pi }{2}}} _{-{frac {pi ^{2}}{4}}}+2underbrace {int _{0}^{frac {pi }{2}}{frac {x}{sin x}}\,dx} _{2G}=4G-{frac {pi ^{2}}{4}}}.

     
    0.3Bearbeiten
    {displaystyle int _{0}^{1}left({frac {arcsin x}{x}} ight)^{3}dx={frac {3pi }{2}}log 2-{frac {pi ^{3}}{16}}}{displaystyle int _{0}^{1}left({frac {arcsin x}{x}}
ight)^{3}dx={frac {3pi }{2}}log 2-{frac {pi ^{3}}{16}}}
    Beweis

    {displaystyle I:=int _{0}^{1}left({frac {arcsin x}{x}} ight)^{3}dx}{displaystyle I:=int _{0}^{1}left({frac {arcsin x}{x}}
ight)^{3}dx} ist nach Substitution {displaystyle xmapsto sin x}{displaystyle xmapsto sin x} gleich {displaystyle int _{0}^{frac {pi }{2}}x^{3}\,{frac {cos x}{sin ^{3}x}}\,dx}{displaystyle int _{0}^{frac {pi }{2}}x^{3}\,{frac {cos x}{sin ^{3}x}}\,dx}.

    Das ist nach partieller Integration {displaystyle left[x^{3}\,{frac {-1}{2sin ^{2}x}} ight]_{0}^{frac {pi }{2}}+int _{0}^{frac {pi }{2}}3x^{2}\,{frac {1}{2\,sin ^{2}x}}\,dx=-{frac {pi ^{3}}{16}}+{frac {3}{2}}int _{0}^{frac {pi }{2}}x^{2}\,{frac {1}{sin ^{2}x}}\,dx}{displaystyle left[x^{3}\,{frac {-1}{2sin ^{2}x}}
ight]_{0}^{frac {pi }{2}}+int _{0}^{frac {pi }{2}}3x^{2}\,{frac {1}{2\,sin ^{2}x}}\,dx=-{frac {pi ^{3}}{16}}+{frac {3}{2}}int _{0}^{frac {pi }{2}}x^{2}\,{frac {1}{sin ^{2}x}}\,dx}.

    Nach wiederholter partieller Integration ist dabei {displaystyle int _{0}^{frac {pi }{2}}x^{2}\,{frac {1}{sin ^{2}x}}\,dx=underbrace {left[-x^{2}\,cot x ight]_{0}^{frac {pi }{2}}} _{=0}+int _{0}^{frac {pi }{2}}2xcot x\,dx}{displaystyle int _{0}^{frac {pi }{2}}x^{2}\,{frac {1}{sin ^{2}x}}\,dx=underbrace {left[-x^{2}\,cot x
ight]_{0}^{frac {pi }{2}}} _{=0}+int _{0}^{frac {pi }{2}}2xcot x\,dx}

    {displaystyle =underbrace {{Big [}2x\,log(sin x){Big ]}_{0}^{frac {pi }{2}}} _{=0}-2int _{0}^{frac {pi }{2}}log(sin x)\,dx=pi log 2}{displaystyle =underbrace {{Big [}2x\,log(sin x){Big ]}_{0}^{frac {pi }{2}}} _{=0}-2int _{0}^{frac {pi }{2}}log(sin x)\,dx=pi log 2}. Also ist {displaystyle I=-{frac {pi ^{3}}{16}}+{frac {3}{2}}\,pi \,log 2}{displaystyle I=-{frac {pi ^{3}}{16}}+{frac {3}{2}}\,pi \,log 2}.

     
    2.1Bearbeiten
    {displaystyle int _{0}^{1}{frac {arcsin {sqrt {x}}}{1-left(2sin {frac {alpha }{2}} ight)^{2}\,x\,(1-x)}}\,dx={frac {pi }{4}}\,{frac {alpha }{sin alpha }}qquad -pi <alpha <pi }{displaystyle int _{0}^{1}{frac {arcsin {sqrt {x}}}{1-left(2sin {frac {alpha }{2}}
ight)^{2}\,x\,(1-x)}}\,dx={frac {pi }{4}}\,{frac {alpha }{sin alpha }}qquad -pi <alpha <pi }
    Beweis

    Nach Substitution {displaystyle xmapsto 1-x}{displaystyle xmapsto 1-x} lässt sich das Integral auch schreiben als {displaystyle int _{0}^{1}{frac {arcsin {sqrt {1-x}}}{1-left(2sin {frac {alpha }{2}} ight)^{2}\,x\,(1-x)}}\,dx}{displaystyle int _{0}^{1}{frac {arcsin {sqrt {1-x}}}{1-left(2sin {frac {alpha }{2}}
ight)^{2}\,x\,(1-x)}}\,dx}.

    Addiert man beide Darstellungen, so ist {displaystyle 2I=int _{0}^{1}{frac {arcsin {sqrt {x}}+arcsin {sqrt {1-x}}}{1-left(2sin {frac {alpha }{2}} ight)^{2}\,x\,(1-x)}}\,dx}{displaystyle 2I=int _{0}^{1}{frac {arcsin {sqrt {x}}+arcsin {sqrt {1-x}}}{1-left(2sin {frac {alpha }{2}}
ight)^{2}\,x\,(1-x)}}\,dx}. Der Zähler ist konstant {displaystyle {frac {pi }{2}}}{frac  {pi }{2}}.

    Somit ist {displaystyle I={frac {pi }{4}}int _{0}^{1}{frac {1}{1-left(2sin {frac {alpha }{2}} ight)^{2}\,x\,(1-x)}}\,dx={frac {pi }{4}}left[{frac {1}{sin alpha }}arctan left((2x-1)\, an {frac {alpha }{2}} ight) ight]_{0}^{1}={frac {pi }{4}}\,{frac {alpha }{sin alpha }}}{displaystyle I={frac {pi }{4}}int _{0}^{1}{frac {1}{1-left(2sin {frac {alpha }{2}}
ight)^{2}\,x\,(1-x)}}\,dx={frac {pi }{4}}left[{frac {1}{sin alpha }}arctan left((2x-1)\,	an {frac {alpha }{2}}
ight)
ight]_{0}^{1}={frac {pi }{4}}\,{frac {alpha }{sin alpha }}}.

  • 相关阅读:
    vs2015 系统找不到指定的文件(异常来自HRESULT:0x80070002)问题的解决方法
    Quartz定时任务和IIS程序池闲置超时时间冲突解决方案
    怎样设置IIS6.0的闲置超时时间
    C#窗体如何通过keybd_event()函数模拟键盘按键(组合键)产生事件
    安装完DevExpress14.2.5,如何破解它呢?
    IIS6.0发布后对路径“D:xxxxxxxweb.config”的访问被拒绝问题的解决方法
    CentOS7 nginx+tomcat实现代理访问java web项目让项目支持jsp和php
    col-xs , col-sm , col-md , col-lg是什么意思?什么时候用?
    Linux 防火墙命令的操作命令CentOS
    Linux(centos)新建,删除,移动,重命名文件夹和文件的命令
  • 原文地址:https://www.cnblogs.com/Eufisky/p/14730800.html
Copyright © 2011-2022 走看看