zoukankan      html  css  js  c++  java
  • 与椭圆积分有关的等式证明

    (XPS001, 2017年拉丁美洲大学生数学竞赛第7题, Iberoamerican College Math Olympiad 2017, Problem 7)令$a<b<c<d$为实数,记
    [f(x)=frac1{sqrt{|x-a|cdot|x-b|cdot|x-c|cdot|x-d|}},]
    求证:
    [int_{a}^b f(x)dx=int_c^df(x)dx.]

    (向禹)对于左边式子,令$x-a=(b-a)sin^2 heta$,则有
    egin{align*}
    int_a^b{fleft( x ight) ext{d}x}&=int_c^d{frac{ ext{d}x}{sqrt{left( x-a ight) left( b-x ight) left( c-x ight) left( d-x ight)}}}\
    &=2int_0^{frac{pi}{2}}{frac{ ext{d} heta}{sqrt{left( c-bsin ^2 heta -acos ^2 heta ight) left( d-bsin ^2 heta -acos ^2 heta ight)}}}\
    &=2int_0^{frac{pi}{2}}{frac{ ext{d}left( an heta ight)}{sqrt{left( csec ^2 heta -b an ^2 heta -a ight) left( dsec ^2 heta -b an ^2 heta -a ight)}}}\
    &=2int_0^{infty}{frac{ ext{d}t}{sqrt{left( cleft( 1+t^2 ight) -bt^2-a ight) left( dleft( 1+t^2 ight) -bt^2-a ight)}}}\
    &=2int_0^{infty}{frac{ ext{d}t}{sqrt{left( left( c-b ight) t^2+left( c-a ight) ight) left( left( d-b ight) t^2+d-a ight)}}}\
    &=frac{2}{sqrt{left( c-b ight) left( d-b ight)}}int_0^{infty}{frac{ ext{d}t}{sqrt{left( t^2+frac{c-a}{c-b} ight) left( t^2+frac{d-a}{d-b} ight)}}}\
    &=frac{2}{sqrt{left( c-b ight) left( d-b ight)}}int_0^{frac{pi}{2}}{frac{ ext{d}varphi}{sqrt{frac{c-a}{c-b}sin ^2varphi +frac{d-a}{d-b}cos ^2varphi}}}~~~left( t=sqrt{frac{c-a}{c-b}} an varphi ight)\
    &=2int_0^{frac{pi}{2}}{frac{ ext{d}varphi}{sqrt{left( c-a ight) left( d-b ight) sin ^2varphi +left( c-b ight) left( d-a ight) cos ^2varphi}}}.
    end{align*}

    对于右边式子,令$x-c=(d-c)sin^2 heta$,则有
    egin{align*}
    int_c^d{fleft( x ight) ext{d}x}&=int_c^d{frac{ ext{d}x}{sqrt{left( x-a ight) left( x-b ight) left( x-c ight) left( d-x ight)}}}\
    &=2int_0^{frac{pi}{2}}{frac{ ext{d} heta}{sqrt{left( dsin ^2 heta +ccos ^2 heta -a ight) left( dsin ^2 heta +ccos ^2 heta -b ight)}}}\
    &=2int_0^{frac{pi}{2}}{frac{ ext{d}left( an heta ight)}{sqrt{left( d an ^2 heta +c-asec ^2 heta ight) left( d an ^2 heta +c-bsec ^2 heta ight)}}}\
    &=2int_0^{infty}{frac{ ext{d}t}{sqrt{left( dt^2+c-aleft( 1+t^2 ight) ight) left( dt^2+c-bleft( 1+t^2 ight) ight)}}}\
    &=2int_0^{infty}{frac{ ext{d}t}{sqrt{left( left( d-a ight) t^2+left( c-a ight) ight) left( left( d-b ight) t^2+left( c-b ight) ight)}}}\
    &=frac{2}{sqrt{left( d-a ight) left( d-b ight)}}int_0^{infty}{frac{ ext{d}t}{sqrt{left( t^2+frac{c-a}{d-a} ight) left( t^2+frac{c-b}{d-b} ight)}}}\
    &=frac{2}{sqrt{left( d-a ight) left( d-b ight)}}int_0^{frac{pi}{2}}{frac{ ext{d}varphi}{sqrt{frac{c-a}{d-a}sin ^2varphi +frac{c-b}{d-b}cos ^2varphi}}}~~~left(t=sqrt{frac{c-a}{d-a}} an varphi ight)\
    &=2int_0^{frac{pi}{2}}{frac{ ext{d}varphi}{sqrt{left( c-a ight) left( d-b ight) sin ^2varphi +left( c-b ight) left( d-a ight) cos ^2varphi}}}=int_a^bf(x)mathrm dx.
    end{align*}

    (XPS002)设$ f(x)=(x-a)(x-b)(x-c)(x-d),a>b>c>d>0 $.证明:
    egin{enumerate}
    item $displaystyleint_{a}^{b}dfrac{1}{sqrt{-f(x)}}dx=displaystyleint_{c}^{d}dfrac{1}{sqrt{-f(x)}}dx $;

    item $displaystyleint_{a}^{b}dfrac{1}{sqrt{-f(x)}}dx=-dfrac{2}{sqrt{(a-c)(b-d)}}Fleft(dfrac{pi}{2},sqrt{dfrac{(a-b)(c-d)}{(a-c)(b-d)}} ight)$;

    item $displaystyleint_{u}^{b}dfrac{1}{sqrt{-f(x)}}dx=-dfrac{2}{sqrt{(a-c)(b-d)}}Fleft(arcsin{sqrt{dfrac{(a-c)(u-b)}{(a-b)(u-c)}}},sqrt{dfrac{(a-b)(c-d)}{(a-c)(b-d)}} ight) $,
    end{enumerate}
    其中$F(varphi,k)$为第一类不完全椭圆积分(incomplete elliptic integral of the first kind),定义成
    [Fleft( varphi ,k ight) =int_0^{varphi}{frac{d heta}{sqrt{1-k^2sin ^2 heta}}}.]
    参考: url{http://en.wikipedia.org/wiki/Elliptic_integral}

  • 相关阅读:
    iSCSI又称为IPSAN
    文档类型定义DTD
    HDU 2971 Tower
    HDU 1588 Gauss Fibonacci
    URAL 1005 Stone Pile
    URAL 1003 Parity
    URAL 1002 Phone Numbers
    URAL 1007 Code Words
    HDU 3306 Another kind of Fibonacci
    FZU 1683 纪念SlingShot
  • 原文地址:https://www.cnblogs.com/Eufisky/p/9950111.html
Copyright © 2011-2022 走看看