zoukankan      html  css  js  c++  java
  • MongoDB 分片的原理、搭建、应用 !

    MongoDB 分片的原理、搭建、应用

     

    一、概念:

          分片(sharding)是指将数据库拆分,将其分散在不同的机器上的过程。将数据分散到不同的机器上,不需要功能强大的服务器就可以存储更多的数据和处理更大的负载。基本思想就是将集合切成小块,这些块分散到若干片里,每个片只负责总数据的一部分,最后通过一个均衡器来对各个分片进行均衡(数据迁移)。通过一个名为mongos的路由进程进行操作,mongos知道数据和片的对应关系(通过配置服务器)。大部分使用场景都是解决磁盘空间的问题,对于写入有可能会变差(+++里面的说明+++),查询则尽量避免跨分片查询。使用分片的时机:

    1,机器的磁盘不够用了。使用分片解决磁盘空间的问题。
    2,单个mongod已经不能满足写数据的性能要求。通过分片让写压力分散到各个分片上面,使用分片服务器自身的资源。
    3,想把大量数据放到内存里提高性能。和上面一样,通过分片使用分片服务器自身的资源。

    二、部署安装: 前提是安装了mongodb(本文用3.0测试)

    在搭建分片之前,先了解下分片中各个角色的作用。

    ① 配置服务器。是一个独立的mongod进程,保存集群和分片的元数据,即各分片包含了哪些数据的信息。最先开始建立,启用日志功能。像启动普通的mongod一样启动配置服务器,指定configsvr选项。不需要太多的空间和资源,配置服务器的1KB空间相当于真是数据的200MB。保存的只是数据的分布表。当服务不可用,则变成只读,无法分块、迁移数据。
    ② 路由服务器。即mongos,起到一个路由的功能,供程序连接。本身不保存数据,在启动时从配置服务器加载集群信息,开启mongos进程需要知道配置服务器的地址,指定configdb选项。
    ③ 分片服务器。是一个独立普通的mongod进程,保存数据信息。可以是一个副本集也可以是单独的一台服务器。

    部署环境:3台机子

    A:配置(3)、路由1、分片1;

    B:分片2,路由2;

    C:分片3

          在部署之前先明白片键的意义,一个好的片键对分片至关重要。片键必须是一个索引,数据根据这个片键进行拆分分散。通过sh.shardCollection加会自动创建索引。一个自增的片键对写入和数据均匀分布就不是很好,因为自增的片键总会在一个分片上写入,后续达到某个阀值可能会写到别的分片。但是按照片键查询会非常高效。随机片键对数据的均匀分布效果很好。注意尽量避免在多个分片上进行查询。在所有分片上查询,mongos会对结果进行归并排序。

    启动上面这些服务,因为在后台运行,所以用配置文件启动,配置文件说明

    1)配置服务器的启动。(A上开启3个,Port:20000、21000、22000) 

    配置服务器是一个普通的mongod进程,所以只需要新开一个实例即可。配置服务器必须开启1个或则3个,开启2个则会报错

    BadValue need either 1 or 3 configdbs

    因为要放到后台用用配置文件启动,需要修改配置文件:

    /etc/mongod_20000.conf

    复制代码
    #数据目录
    dbpath=/usr/local/config/
    #日志文件
    logpath=/var/log/mongodb/mongodb_config.log
    #日志追加
    logappend=true
    #端口
    port = 20000
    #最大连接数
    maxConns = 50
    pidfilepath = /var/run/mongo_20000.pid
    #日志,redo log
    journal = true
    #刷写提交机制
    journalCommitInterval = 200
    #守护进程模式
    fork = true
    #刷写数据到日志的频率
    syncdelay = 60
    #storageEngine = wiredTiger
    #操作日志,单位M
    oplogSize = 1000
    #命名空间的文件大小,默认16M,最大2G。
    nssize = 16
    noauth = true
    unixSocketPrefix = /tmp
    configsvr = true
    复制代码

    /etc/mongod_21000.conf

    复制代码
    数据目录
    dbpath=/usr/local/config1/
    #日志文件
    logpath=/var/log/mongodb/mongodb_config1.log
    #日志追加
    logappend=true
    #端口
    port = 21000
    #最大连接数
    maxConns = 50
    pidfilepath = /var/run/mongo_21000.pid
    #日志,redo log
    journal = true
    #刷写提交机制
    journalCommitInterval = 200
    #守护进程模式
    fork = true
    #刷写数据到日志的频率
    syncdelay = 60
    #storageEngine = wiredTiger
    #操作日志,单位M
    oplogSize = 1000
    #命名空间的文件大小,默认16M,最大2G。
    nssize = 16
    noauth = true
    unixSocketPrefix = /tmp
    configsvr = true
    复制代码

    开启配置服务器:

    复制代码
    root@mongo1:~# mongod -f /etc/mongod_20000.conf 
    about to fork child process, waiting until server is ready for connections.
    forked process: 8545
    child process started successfully, parent exiting
    
    root@mongo1:~# mongod -f /etc/mongod_21000.conf 
    about to fork child process, waiting until server is ready for connections.
    forked process: 8595
    child process started successfully, parent exiting
    复制代码

    同理再起一个22000端口的配置服务器。

    复制代码
    #数据目录
    dbpath=/usr/local/config2/
    #日志文件
    logpath=/var/log/mongodb/mongodb_config2.log
    #日志追加
    logappend=true
    #端口
    port = 22000
    #最大连接数
    maxConns = 50
    pidfilepath = /var/run/mongo_22000.pid
    #日志,redo log
    journal = true
    #刷写提交机制
    journalCommitInterval = 200
    #守护进程模式
    fork = true
    #刷写数据到日志的频率
    syncdelay = 60
    #storageEngine = wiredTiger
    #操作日志,单位M
    oplogSize = 1000
    #命名空间的文件大小,默认16M,最大2G。
    nssize = 16
    
    noauth = true
    unixSocketPrefix = /tmp
    
    configsvr = true
    复制代码

    2)路由服务器的启动。(A、B上各开启1个,Port:30000)

    路由服务器不保存数据,把日志记录一下即可。

    复制代码
    # mongos
    
    #日志文件
    logpath=/var/log/mongodb/mongodb_route.log
    #日志追加
    logappend=true
    #端口
    port = 30000
    #最大连接数
    maxConns = 100
    #绑定地址
    #bind_ip=192.168.200.*,...,
    
    pidfilepath = /var/run/mongo_30000.pid
    
    configdb=192.168.200.A:20000,192.168.200.A:21000,192.168.200.A:22000  #必须是1个或则3个配置 。
    #configdb=127.0.0.1:20000  #报错
    #守护进程模式 fork = true
    复制代码

    其中最重要的参数是configdb,不能在其后面带的配置服务器的地址写成localhost或则127.0.0.1,需要设置成其他分片也能访问的地址,即192.168.200.A:20000/21000/22000。否则在addshard的时候会报错:

    {
    "ok" : 0,
    "errmsg" : "can't use localhost as a shard since all shards need to communicate. either use all shards and configdbs in localhost or all in actual IPs  host: 172.16.5.104:20000 isLocalHost:0"
    }

    开启mongos:

    root@mongo1:~# mongos -f /etc/mongod_30000.conf 
    2015-07-10T14:42:58.741+0800 W SHARDING running with 1 config server should be done only for testing purposes and is not recommended for production
    about to fork child process, waiting until server is ready for connections.
    forked process: 8965
    child process started successfully, parent exiting

    3)分片服务器的启动:

    就是一个普通的mongod进程:

    root@mongo1:~# mongod -f /etc/mongod_40000.conf 
    note: noprealloc may hurt performance in many applications
    about to fork child process, waiting until server is ready for connections.
    forked process: 9020
    child process started successfully, parent exiting

    A服务器上面的服务开启完毕

    root@mongo1:~# ps -ef | grep mongo
    root      9020     1  0 14:47 ?        00:00:06 mongod -f /etc/mongod_40000.conf
    root      9990     1  0 15:14 ?        00:00:02 mongod -f /etc/mongod_20000.conf
    root     10004     1  0 15:14 ?        00:00:01 mongod -f /etc/mongod_21000.conf
    root     10076     1  0 15:20 ?        00:00:00 mongod -f /etc/mongod_22000.conf
    root     10096     1  0 15:20 ?        00:00:00 mongos -f /etc/mongod_30000.conf

    按照上面的方法再到B上开启分片服务和路由服务(配置文件一样),以及在C上开启分片服务。到此分片的配置服务器、路由服务器、分片服务器都已经部署完成。

    三、配置分片:下面的操作都是在mongodb的命令行里执行

    1)添加分片sh.addShard("IP:Port") 

    登陆路由服务器mongos 操作:

    root@mongo1:~# mongo --port=30000
    MongoDB shell version: 3.0.4
    connecting to: 127.0.0.1:30000/test
    mongos> 

    添加分片:

    复制代码
    mongos> sh.status()    #查看集群的信息
    --- Sharding Status --- 
      sharding version: {
        "_id" : 1,
        "minCompatibleVersion" : 5,
        "currentVersion" : 6,
        "clusterId" : ObjectId("559f72470f93270ba60b26c6")
    }
      shards:
      balancer:
        Currently enabled:  yes
        Currently running:  no
        Failed balancer rounds in last 5 attempts:  0
        Migration Results for the last 24 hours: 
            No recent migrations
      databases:
        {  "_id" : "admin",  "partitioned" : false,  "primary" : "config" }
    
    mongos> sh.addShard("192.168.200.A:40000") #添加分片
    { "shardAdded" : "shard0000", "ok" : 1 }
    mongos> sh.addShard("192.168.200.B:40000") #添加分片
    { "shardAdded" : "shard0001", "ok" : 1 }
    mongos> sh.addShard("192.168.200.C:40000") #添加分片
    { "shardAdded" : "shard0002", "ok" : 1 }
    
    mongos> sh.status()    #查看集群信息
    --- Sharding Status --- 
      sharding version: {
        "_id" : 1,
        "minCompatibleVersion" : 5,
        "currentVersion" : 6,
        "clusterId" : ObjectId("559f72470f93270ba60b26c6")
    }
      shards:  #分片信息
        {  "_id" : "shard0000",  "host" : "192.168.200.A:40000" }
        {  "_id" : "shard0001",  "host" : "192.168.200.B:40000" }
        {  "_id" : "shard0002",  "host" : "192.168.200.C:40000" }
      balancer:
        Currently enabled:  yes
        Currently running:  no
        Failed balancer rounds in last 5 attempts:  0
        Migration Results for the last 24 hours: 
            No recent migrations
      databases:
        {  "_id" : "admin",  "partitioned" : false,  "primary" : "config" }
    复制代码

    2)开启分片功能:sh.enableSharding("库名")、sh.shardCollection("库名.集合名",{"key":1})

    复制代码
    mongos> sh.enableSharding("dba")  #首先对数据库启用分片
    { "ok" : 1 }
    mongos> sh.status()               #查看分片信息
    --- Sharding Status ---...
    ... databases: { "_id" : "admin", "partitioned" : false, "primary" : "config" } { "_id" : "test", "partitioned" : false, "primary" : "shard0000" } { "_id" : "dba", "partitioned" : true, "primary" : "shard0000" } mongos> sh.shardCollection("dba.account",{"name":1}) #再对集合进行分片,name字段是片键。片键的选择:利于分块、分散写请求、查询数据。 { "collectionsharded" : "dba.account", "ok" : 1 } mongos> sh.status() --- Sharding Status ---... shards: { "_id" : "shard0000", "host" : "192.168.200.51:40000" } { "_id" : "shard0001", "host" : "192.168.200.52:40000" } { "_id" : "shard0002", "host" : "192.168.200.53:40000" } ... databases: { "_id" : "admin", "partitioned" : false, "primary" : "config" } { "_id" : "test", "partitioned" : false, "primary" : "shard0000" } { "_id" : "dba", "partitioned" : true, "primary" : "shard0000" } #库 dba.account shard key: { "name" : 1 } #集合 chunks: shard0000 1 { "name" : { "$minKey" : 1 } } -->> { "name" : { "$maxKey" : 1 } } on : shard0000 Timestamp(1, 0)
    复制代码

    上面加粗部分表示分片信息已经配置完成。要是出现:

    too many chunks to print, use verbose if you want to force print

    想要看到详细的信息则需要执行:

    mongos> sh.status({"verbose":1})
    或则
    mongos> db.printShardingStatus("vvvv")
    或则
    mongos> printShardingStatus(db.getSisterDB("config"),1)

    四、测试 :对dba库的account集合进行测试,随机写入,查看是否分散到3个分片中。

    判断是否为shard:db.runCommand({isdbgrid:1})

    mongos> db.runCommand({isdbgrid:1})
    { "isdbgrid" : 1, "hostname" : "mongo3c", "ok" : 1 }

    通过一个python脚本进行随机写入:分别向A、B 2个mongos各写入10万条记录。

    复制代码
    #!/usr/bin/env python
    #-*- coding:utf-8 -*-
    #随即写MongoDB Shard 测试
    
    import pymongo
    import time
    from random import Random
    def random_str(randomlength=8):
        str = ''
        chars = 'AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz0123456789'
        length = len(chars) - 1
        random = Random()
        for i in range(randomlength):
            str+=chars[random.randint(0, length)]
            return str
    
    def inc_data(conn):
        db = conn.dba
    #    db = conn.test
        collection = db.account
        for i in range(100000):
            str = ''
            chars = 'AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz0123456789'
            length = len(chars) - 1
            random = Random()
            for i in range(15):
                str+=chars[random.randint(0, length)]
                string = str
            collection.insert({"name" : string, "age" : 123+i, "address" : "hangzhou"+string})
    
    if __name__ =='__main__':
        conn = pymongo.MongoClient(host='192.168.200.A/B',port=30000)
    
        StartTime = time.time()
        print "===============$inc==============="
        print "StartTime : %s" %StartTime
        inc_data(conn)
        EndTime = time.time()
        print "EndTime : %s" %EndTime
        CostTime = round(EndTime-StartTime)
        print "CostTime : %s" %CostTime
    复制代码

    查看是否分片:db.collection.stats()

    复制代码
    mongos> db.account.stats() #查看集合的分布情况
    ...
    ... "shards" : { "shard0000" : { "ns" : "dba.account", "count" : 89710, "size" : 10047520, ...
    ... "shard0001" : { "ns" : "dba.account", "count" : 19273, "size" : 2158576, ...
    ... "shard0002" : { "ns" : "dba.account", "count" : 91017, "size" : 10193904, ...
    ...
    复制代码

    上面加粗部分为集合的基本信息,可以看到分片成功,各个分片都有数据(count)。到此MongoDB分片集群搭建成功。

    ++++++++++++++++++++++++++++++++++++++++++++++++

    感兴趣的同学可以看下面这个比较有趣的现象:

    复制代码
    #在写之前分片的基本信息:
    mongos> sh.status()
    --- Sharding Status --- 
    ...
    ...
      databases:
        {  "_id" : "admin",  "partitioned" : false,  "primary" : "config" }
        {  "_id" : "test",  "partitioned" : false,  "primary" : "shard0000" }
        {  "_id" : "dba",  "partitioned" : true,  "primary" : "shard0000" }
            dba.account
                shard key: { "name" : 1 }
                chunks:
                    shard0000    1
                { "name" : { "$minKey" : 1 } } -->> { "name" : { "$maxKey" : 1 } } on : shard0000 Timestamp(1, 0)   #可以看到这里片键的写入,都是写在shard0000里面的。
    
    #在写期间的分片基本信息:
    mongos> sh.status()
    --- Sharding Status --- 
    ...
    ...
      databases:
        {  "_id" : "admin",  "partitioned" : false,  "primary" : "config" }
        {  "_id" : "test",  "partitioned" : false,  "primary" : "shard0000" }
        {  "_id" : "dba",  "partitioned" : true,  "primary" : "shard0000" }
            dba.account
                shard key: { "name" : 1 }
                chunks:          #数据块分布
                    shard0000    1
                    shard0001    1
                    shard0002    1
                { "name" : { "$minKey" : 1 } } -->> { "name" : "5yyfY8mmR5HyhGJ" } on : shard0001 Timestamp(2, 0) 
                { "name" : "5yyfY8mmR5HyhGJ" } -->> { "name" : "woQAv99Pq1FVoMX" } on : shard0002 Timestamp(3, 0) 
                { "name" : "woQAv99Pq1FVoMX" } -->> { "name" : { "$maxKey" : 1 } } on : shard0000 Timestamp(3, 1)   #可以看到片键写入的基本分布
    
    #在写完成后的基本信息:
    mongos> sh.status()
    --- Sharding Status --- 
    ...
    ...
      databases:
        {  "_id" : "admin",  "partitioned" : false,  "primary" : "config" }
        {  "_id" : "test",  "partitioned" : false,  "primary" : "shard0000" }
        {  "_id" : "dba",  "partitioned" : true,  "primary" : "shard0000" }
            dba.account
                shard key: { "name" : 1 }
                chunks:          #数据块分布
                    shard0000    2
                    shard0001    1
                    shard0002    2
                { "name" : { "$minKey" : 1 } } -->> { "name" : "5yyfY8mmR5HyhGJ" } on : shard0001 Timestamp(2, 0) 
                { "name" : "5yyfY8mmR5HyhGJ" } -->> { "name" : "UavMbMlfszZOFrz" } on : shard0000 Timestamp(4, 0) 
                { "name" : "UavMbMlfszZOFrz" } -->> { "name" : "t9LyVSNXDmf6esP" } on : shard0002 Timestamp(4, 1) 
                { "name" : "t9LyVSNXDmf6esP" } -->> { "name" : "woQAv99Pq1FVoMX" } on : shard0002 Timestamp(3, 4) 
                { "name" : "woQAv99Pq1FVoMX" } -->> { "name" : { "$maxKey" : 1 } } on : shard0000 Timestamp(3, 1)  #最后片键写入的分布
    复制代码

    上面加粗的信息对比上看到,本来在每个分片上都只有一个块,最后在shard0000、shard0002上有2个块,被拆分了。shard0001不变。这是因为mongos在收到写请求的时候,会检查当前块的拆分阀值点。到达该阀值的时候,会向分片发起一个拆分的请求。例子中shard0000和shard0002里的块被拆分了。分片内的数据进行了迁移(有一定的消耗),最后通过一个均衡器来对数据进行转移分配。所以在写入途中要是看到一个分片中集合的数量变小也是正常的。

    balancer:  #均衡器
        Currently enabled:  yes
        Currently running:  yes   #正在转移
            Balancer lock taken at Fri Jul 10 2015 22:57:27 GMT+0800 (CST) by mongo2:30000:1436540125:1804289383:Balancer:846930886

    均衡器:均衡器负责数据迁移,周期性的检查分片是否存在不均衡,如果不存在则会开始块的迁移,config.locks集合里的state表示均衡器是否找正在运行,0表示非活动状态,2表示正在均衡。均衡迁移数据的过程会增加系统的负载:目标分片必须查询源分片的所有文档,将文档插入目标分片中,再清除源分片的数据。可以关闭均衡器(不建议):关闭会导致各分片数据分布不均衡,磁盘空间得不到有效的利用。 

    mongos> sh.setBalancerState(false)  #关闭自动均衡器,手动均衡,打开:sh.setBalancerState(true)
    mongos> db.settings.find()          #查看均衡器状态
    { "_id" : "balancer", "stopped" : true }

    可以为均衡器设置一个均衡时间窗口:activeWindow

    mongos> db.settings.update({"_id":"balancer"},{"$set":{"activeWindow":{"start":"08:00","stop":"02:00"}}},true)
    WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
    mongos> db.settings.find({"_id":"balancer"})
    { "_id" : "balancer", "stopped" : false, "activeWindow" : { "start" : "08:00", "stop" : "02:00" } }

    上面说明:均衡只会在早上8点到凌晨2点进行均衡操作。均衡器是以块的数量作为迁移指标,而非数据大小,块的大小默认是64M,可以修改:(config.settings)

    mongos> db.settings.find()
    { "_id" : "chunksize", "value" : 64 }
    mongos> db.settings.save({"_id":"chunksize","value":32})
    WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
    mongos> db.settings.find()
    { "_id" : "chunksize", "value" : 32 }

    上面把块的默认大小改成了32M,除了通过均衡器自动迁移外,还可以手动迁移数据sh.moveChunk("db.collection",{块地址},"新片名称")

    复制代码
    mongos> db.chunks.find({"_id" : "abc.account-name_"wPeFnJEvendSTbH""}).pretty() #先到config.chunks上任意找一个块
    {
        "_id" : "abc.account-name_"wPeFnJEvendSTbH"",
        "lastmod" : Timestamp(3, 1),
        "lastmodEpoch" : ObjectId("55a52ff1fdd9a605a0371327"),
        "ns" : "abc.account",
        "min" : {
            "name" : "wPeFnJEvendSTbH"              #被移动的块
        },
        "max" : {
            "name" : { "$maxKey" : 1 }
        },
        "shard" : "shard0000"                       #原先所在的分片
    }
    mongos> sh.moveChunk("abc.account",{"name" : "wPeFnJEvendSTbH"},"mablevi")  #把abc.account集合中包含name(片键)为""的快迁移到mablevi分片中
    { "millis" : 6800, "ok" : 1 }
    mongos> db.chunks.find({"_id" : "abc.account-name_"wPeFnJEvendSTbH""}).pretty()  
    {
        "_id" : "abc.account-name_"wPeFnJEvendSTbH"",
        "lastmod" : Timestamp(5, 0),
        "lastmodEpoch" : ObjectId("55a52ff1fdd9a605a0371327"),
        "ns" : "abc.account",
        "min" : {
            "name" : "wPeFnJEvendSTbH"
        },
        "max" : {
            "name" : { "$maxKey" : 1 }
        },
        "shard" : "mablevi"                        #已被迁移到新片
    }
    复制代码

    上面是手动移动数据的操作,数据被移动。 要是块超出了64M限制【原因是片键没选好(日期、状态值等),导致一个块无限增大】,则无法进行自动均衡,无法分块。有2个办法:1是加大块的大小(setting),2是拆分sh.splitAt()(推荐)。

    所以要是遇到分片写入比单点写入慢就是因为分片路由服务(mongos)需要维护元数据、数据迁移、路由开销等

    ++++++++++++++++++++++++++++++++++++++++++++++++

    五、高可用:Sharding+Replset

    上面的分片都是单点的,要是一个分片坏了,则数据会丢失,利用之前减少的副本集,能否把副本集加入到分片中?下面就来说明下。

    1)添加副本集分片服务器(mmm副本集名称):这里测试就只对一个分片加副本集,要实现完全的高可用就需要对所有分片加副本集,避免单点故障

    一个普通的副本集:

    复制代码
    mmm:PRIMARY> rs.status()
    {
        "set" : "mmm",
        "date" : ISODate("2015-07-10T16:17:19Z"),
        "myState" : 1,
        "members" : [
            {
                "_id" : 2,
                "name" : "192.168.200.245:27017",
                "health" : 1,
                "state" : 2,
                "stateStr" : "SECONDARY",
                "uptime" : 418,
                "optime" : Timestamp(1436545003, 1),
                "optimeDate" : ISODate("2015-07-10T16:16:43Z"),
                "lastHeartbeat" : ISODate("2015-07-10T16:17:17Z"),
                "lastHeartbeatRecv" : ISODate("2015-07-10T16:17:18Z"),
                "pingMs" : 0,
                "syncingTo" : "192.168.200.25:27017"
            },
            {
                "_id" : 3,
                "name" : "192.168.200.25:27017",
                "health" : 1,
                "state" : 1,
                "stateStr" : "PRIMARY",
                "uptime" : 891321,
                "optime" : Timestamp(1436545003, 1),
                "optimeDate" : ISODate("2015-07-10T16:16:43Z"),
                "self" : true
            },
            {
                "_id" : 4,
                "name" : "192.168.200.245:37017",
                "health" : 1,
                "state" : 2,
                "stateStr" : "SECONDARY",
                "uptime" : 36,
                "optime" : Timestamp(1436545003, 1),
                "optimeDate" : ISODate("2015-07-10T16:16:43Z"),
                "lastHeartbeat" : ISODate("2015-07-10T16:17:17Z"),
                "lastHeartbeatRecv" : ISODate("2015-07-10T16:17:17Z"),
                "pingMs" : 0,
                "syncingTo" : "192.168.200.25:27017"
            }
        ],
        "ok" : 1
    }
    复制代码

    现在需要把这个副本集加入到分片中:

    复制代码
    mongos> sh.addShard("mmm/192.168.200.25:27017,192.168.200.245:27017,192.168.200.245:37017") #加入副本集分片
    { "shardAdded" : "mmm", "ok" : 1 }
    
    mongos> sh.status()
    --- Sharding Status --- 
    ...
    ...
    shards: { "_id" : "mmm", "host" : "mmm/192.168.200.245:27017,192.168.200.245:37017,192.168.200.25:27017" } { "_id" : "shard0000", "host" : "192.168.200.51:40000" } { "_id" : "shard0001", "host" : "192.168.200.52:40000" } { "_id" : "shard0002", "host" : "192.168.200.53:40000" } balancer: Currently enabled: yes Currently running: no Failed balancer rounds in last 5 attempts: 0 Migration Results for the last 24 hours: 4 : Success databases: { "_id" : "admin", "partitioned" : false, "primary" : "config" } { "_id" : "test", "partitioned" : false, "primary" : "shard0000" } { "_id" : "dba", "partitioned" : true, "primary" : "shard0000" } dba.account shard key: { "name" : 1 } chunks: mmm 1 shard0000 1 shard0001 1 shard0002 2 { "name" : { "$minKey" : 1 } } -->> { "name" : "5yyfY8mmR5HyhGJ" } on : shard0001 Timestamp(2, 0) { "name" : "5yyfY8mmR5HyhGJ" } -->> { "name" : "UavMbMlfszZOFrz" } on : mmm Timestamp(5, 0) { "name" : "UavMbMlfszZOFrz" } -->> { "name" : "t9LyVSNXDmf6esP" } on : shard0002 Timestamp(4, 1) { "name" : "t9LyVSNXDmf6esP" } -->> { "name" : "woQAv99Pq1FVoMX" } on : shard0002 Timestamp(3, 4) { "name" : "woQAv99Pq1FVoMX" } -->> { "name" : { "$maxKey" : 1 } } on : shard0000 Timestamp(5, 1) { "_id" : "abc", "partitioned" : false, "primary" : "shard0000" } #未设置分片
    复制代码

    上面加粗部分表示副本集分片已经成功加入,并且新加入的分片会分到已有的分片数据

    复制代码
    mongos> db.account.stats()
    ...
    ...
        "shards" : {
            "mmm" : {
                "ns" : "dba.account",
                "count" : 7723,        #后加入的分片得到了数据
                "size" : 741408,
                "avgObjSize" : 96,
                "storageSize" : 2793472,
                "numExtents" : 5,
                "nindexes" : 2,
                "lastExtentSize" : 2097152,
                "paddingFactor" : 1,
                "systemFlags" : 1,
                "userFlags" : 0,
                "totalIndexSize" : 719488,
                "indexSizes" : {
                    "_id_" : 343392,
                    "name_1" : 376096
                },
                "ok" : 1
            },
    ...
    ...
    复制代码

    2)继续用python脚本写数据,填充到副本集中 

    由于之前的副本集是比较老的版本(2.4),所以在写入副本集分片的时候报错:

    复制代码
    mongos> db.account.insert({"name":"UavMbMlfsz1OFrz"})
    WriteResult({
        "nInserted" : 0,
        "writeError" : {
            "code" : 83,
            "errmsg" : "write results unavailable from 192.168.200.25:27017 :: caused by :: Location28563 cannot send batch write operation to server 192.168.200.25:27017 (192.168.200.25)"
        }
    })
    复制代码

    太混蛋了,错误提示不太人性化,搞了半天。所以说版本一致性还是很重要的。现在重新开了一个副本集

    复制代码
    mablevi:PRIMARY> rs.status()
    {
        "set" : "mablevi",
        "date" : ISODate("2015-07-10T18:22:36.761Z"),
        "myState" : 1,
        "members" : [
            {
                "_id" : 1,
                "name" : "192.168.200.53:50000",
                "health" : 1,
                "state" : 1,
                "stateStr" : "PRIMARY",
                "uptime" : 820,
                "optime" : Timestamp(1436552412, 213),
                "optimeDate" : ISODate("2015-07-10T18:20:12Z"),
                "electionTime" : Timestamp(1436551910, 1),
                "electionDate" : ISODate("2015-07-10T18:11:50Z"),
                "configVersion" : 2,
                "self" : true
            },
            {
                "_id" : 2,
                "name" : "192.168.200.53:50001",
                "health" : 1,
                "state" : 2,
                "stateStr" : "SECONDARY",
                "uptime" : 650,
                "optime" : Timestamp(1436552412, 213),
                "optimeDate" : ISODate("2015-07-10T18:20:12Z"),
                "lastHeartbeat" : ISODate("2015-07-10T18:22:36.737Z"),
                "lastHeartbeatRecv" : ISODate("2015-07-10T18:22:36.551Z"),
                "pingMs" : 0,
                "syncingTo" : "192.168.200.53:50000",
                "configVersion" : 2
            },
            {
                "_id" : 3,
                "name" : "192.168.200.53:50002",
                "health" : 1,
                "state" : 2,
                "stateStr" : "SECONDARY",
                "uptime" : 614,
                "optime" : Timestamp(1436552412, 213),
                "optimeDate" : ISODate("2015-07-10T18:20:12Z"),
                "lastHeartbeat" : ISODate("2015-07-10T18:22:36.742Z"),
                "lastHeartbeatRecv" : ISODate("2015-07-10T18:22:36.741Z"),
                "pingMs" : 0,
                "syncingTo" : "192.168.200.53:50001",
                "configVersion" : 2
            }
        ],
        "ok" : 1,
        "$gleStats" : {
            "lastOpTime" : Timestamp(1436551942, 1),
            "electionId" : ObjectId("55a00ae6a08c789ce9e4b50d")
        }
    }
    复制代码

    把之前的副本集分片删除了,如何删除见下面3)。

    新的副本集加入分片中:

    复制代码
    mongos> sh.addShard("mablevi/192.168.200.53:50000,192.168.200.53:50001,192.168.200.53:50002")
    { "shardAdded" : "mablevi", "ok" : 1 }
    
    mongos> sh.status()
    --- Sharding Status --- 
    ...
    ...
      shards:
        {  "_id" : "mablevi",  "host" : "mablevi/192.168.200.53:50000,192.168.200.53:50001,192.168.200.53:50002" }
        {  "_id" : "shard0000",  "host" : "192.168.200.51:40000" }
        {  "_id" : "shard0001",  "host" : "192.168.200.52:40000" }
        {  "_id" : "shard0002",  "host" : "192.168.200.53:40000" }
    ...
    ...
            dba.account
                shard key: { "name" : 1 }
                chunks:
                    mablevi    1
                    shard0000    1
                    shard0001    1
                    shard0002    2
                { "name" : { "$minKey" : 1 } } -->> { "name" : "5yyfY8mmR5HyhGJ" } on : shard0001 Timestamp(2, 0) 
                { "name" : "5yyfY8mmR5HyhGJ" } -->> { "name" : "UavMbMlfszZOFrz" } on : mablevi Timestamp(9, 0) #新加入的分片得到数据
                { "name" : "UavMbMlfszZOFrz" } -->> { "name" : "t9LyVSNXDmf6esP" } on : shard0002 Timestamp(4, 1) 
                { "name" : "t9LyVSNXDmf6esP" } -->> { "name" : "woQAv99Pq1FVoMX" } on : shard0002 Timestamp(3, 4) 
                { "name" : "woQAv99Pq1FVoMX" } -->> { "name" : { "$maxKey" : 1 } } on : shard0000 Timestamp(9, 1) 
        {  "_id" : "abc",  "partitioned" : false,  "primary" : "shard0000" }
        {  "_id" : "mablevi",  "partitioned" : false,  "primary" : "shard0001" }
    复制代码

    继续用python写入操作:

    复制代码
    mongos> db.account.stats()
    {
    ...
    ... "shards" : { "mablevi" : { "ns" : "dba.account", "count" : 47240, "size" : 5290880, ...
    ...
    复制代码

    副本集的分片被写入了47240条记录。此时把副本集分片的Primary shutdown掉,再查看:

    复制代码
    mongos> db.account.stats()
    {
        "sharded" : true,
        "code" : 13639,
        "ok" : 0,
        "errmsg" : "exception: can't connect to new replica set master [192.168.200.53:50000], err: couldn't connect to server 192.168.200.53:50000 (192.168.200.53), connection attempt failed"  #由于副本集的Primary被shutdown之后,选举新主还是要几秒的时间,期间数据不能访问,导致分片数据也不能访问
    }
    mongos> db.account.stats()
    ...
    ...
        "shards" : {
            "mablevi" : {
                "ns" : "dba.account",
                "count" : 47240,       #副本集新主选举完毕之后,分片数据访问正常。数据没有丢失,高可用得到了实现。
                "size" : 5290880,
    ...
    ...
    复制代码

    要是让副本集分片只剩下一台(Secondary),则分片会报错: 

    复制代码
    mongos> db.account.stats()
    {
        "sharded" : true,
        "code" : 10009,
        "ok" : 0,
        "errmsg" : "exception: ReplicaSetMonitor no master found for set: mablevi" #数据不能访问
    }
    复制代码

    3)删除分片: db.runCommand({"removeshard":"mmm"})

    要是觉得分片太多了,想删除,则:

    复制代码
    mongos> use admin   #需要到admin下面删除
    switched to db admin
    mongos> db.runCommand({"removeshard":"mmm"})
    {
        "msg" : "draining started successfully",
        "state" : "started",   #开始删除,数据正在转移
        "shard" : "mmm",
        "ok" : 1
    }
    mongos> sh.status()
    --- Sharding Status ---...
    ... shards: { "_id" : "mmm", "host" : "mmm/192.168.200.245:27017,192.168.200.245:37017,192.168.200.25:27017", "draining" : true } #删除的分片数据移动到其他分片 { "_id" : "shard0000", "host" : "192.168.200.51:40000" } { "_id" : "shard0001", "host" : "192.168.200.52:40000" } { "_id" : "shard0002", "host" : "192.168.200.53:40000" } ...
    ... databases: { "_id" : "admin", "partitioned" : false, "primary" : "config" } { "_id" : "test", "partitioned" : false, "primary" : "shard0000" } { "_id" : "dba", "partitioned" : true, "primary" : "shard0000" } dba.account shard key: { "name" : 1 } chunks: shard0000 2 shard0001 1 shard0002 2 { "name" : { "$minKey" : 1 } } -->> { "name" : "5yyfY8mmR5HyhGJ" } on : shard0001 Timestamp(2, 0) { "name" : "5yyfY8mmR5HyhGJ" } -->> { "name" : "UavMbMlfszZOFrz" } on : shard0000 Timestamp(8, 0) { "name" : "UavMbMlfszZOFrz" } -->> { "name" : "t9LyVSNXDmf6esP" } on : shard0002 Timestamp(4, 1) #这里已经没有了被删除分片信息 { "name" : "t9LyVSNXDmf6esP" } -->> { "name" : "woQAv99Pq1FVoMX" } on : shard0002 Timestamp(3, 4) { "name" : "woQAv99Pq1FVoMX" } -->> { "name" : { "$maxKey" : 1 } } on : shard0000 Timestamp(7, 1) { "_id" : "abc", "partitioned" : false, "primary" : "shard0000" } { "_id" : "mablevi", "partitioned" : false, "primary" : "shard0001" } mongos> db.runCommand({"removeshard":"mmm"}) #再次执行,直到执行成功,要是原来分片的数据比较大,这里比较费时,要是一个主分片则需要执行movePrimary { "msg" : "removeshard completed successfully", "state" : "completed", #完成删除 "shard" : "mmm", "ok" : 1 } mongos> sh.status() --- Sharding Status ---... shards: #分片消失 { "_id" : "shard0000", "host" : "192.168.200.51:40000" } { "_id" : "shard0001", "host" : "192.168.200.52:40000" } { "_id" : "shard0002", "host" : "192.168.200.53:40000" } ...
    ... { "name" : { "$minKey" : 1 } } -->> { "name" : "5yyfY8mmR5HyhGJ" } on : shard0001 Timestamp(2, 0) { "name" : "5yyfY8mmR5HyhGJ" } -->> { "name" : "UavMbMlfszZOFrz" } on : shard0000 Timestamp(8, 0) { "name" : "UavMbMlfszZOFrz" } -->> { "name" : "t9LyVSNXDmf6esP" } on : shard0002 Timestamp(4, 1) #已经没有了被删除分片的信息 { "name" : "t9LyVSNXDmf6esP" } -->> { "name" : "woQAv99Pq1FVoMX" } on : shard0002 Timestamp(3, 4) { "name" : "woQAv99Pq1FVoMX" } -->> { "name" : { "$maxKey" : 1 } } on : shard0000 Timestamp(7, 1) { "_id" : "abc", "partitioned" : false, "primary" : "shard0000" } { "_id" : "mablevi", "partitioned" : false, "primary" : "shard0001" }
    复制代码

    分片被删除之后,数据被移到其他分片中,不会丢失。要是想让主分片进行转移则(movePrimary):

    mongos> db.adminCommand({"movePrimary":"test","to":"shard0001"}) #把test的主分片从shard0000迁移到shard0001 

    刷新下配置服务器:db.adminCommand({"flushRouterConfig":1})

    db.adminCommand({"flushRouterConfig":1})

    最后来查看下分片成员:db.runCommand({ listshards : 1 })

    复制代码
    mongos> use admin  #需要进入admin才能执行
    switched to db admin
    mongos> db.runCommand({ listshards : 1 })
    {
        "shards" : [
            {
                "_id" : "shard0000",
                "host" : "192.168.200.51:40000"
            },
            {
                "_id" : "shard0001",
                "host" : "192.168.200.52:40000"
            },
            {
                "_id" : "shard0002",
                "host" : "192.168.200.53:40000"
            },
            {
                "_id" : "mablevi",
                "host" : "mablevi/192.168.200.53:50000,192.168.200.53:50001,192.168.200.53:50002"
            }
        ],
        "ok" : 1
    }
    复制代码

    到此已经把MongoDB分片原理、搭建、应用大致已经介绍完。

    六、认证分配

          上面的所有操作都是在无账号密码下进行的,这样是不安全的,那如何使用账号密码呢?和副本级一样,需要添加KeyFile参数,但是针对上面的三个角色(config、mongos、mongod)账号密码怎么添加呢?官网上已经做了说明:http://docs.mongodb.org/manual/tutorial/enable-authentication-in-sharded-cluster/。下面就对有账号密码认证分片进行相关设置说明

    首先要创建账号(Root角色)和生成一个KeyFile文件其中mongos 不需要创建账号。

    openssl rand -base64 741 > mongodb-keyfile
    chmod 600 mongodb-keyfile

    其实这个文件也可以直接用明文,只要保证各个地方指定的文件是同一个就可以了。

    1)mongd: 首先在mongod角色的分片成员上生成key file文件,特别注意的是有副本级的分片,再把这个文件分别复制到其他角色的服务器上。再添加参数:

    auth = true
    keyFile = /usr/local/mongodb-keyfile

    2)Config上添加参数:

    auth = true
    keyFile = /usr/local/mongodb-keyfile

    3)mongos上添加参数,因为mongos本来就是从config里加载数据的,所以只需要添加keyfile文件即可,不需要找上面createUser。

    keyFile = /usr/local/mongodb-keyfile

    最后重启各个服务,再进入mongos里查看:

    复制代码
    root@mongo1:/usr/local# mongo --port=30000
    MongoDB shell version: 3.0.4
    connecting to: 127.0.0.1:30000/test
    mongos> sh.status()      #没有认证,没有权限报错。
    2015-07-14T23:42:11.800+0800 E QUERY    Error: error: { "$err" : "not authorized for query on config.version", "code" : 13 }
        at Error (<anonymous>)
        at DBQuery.next (src/mongo/shell/query.js:259:15)
        at DBCollection.findOne (src/mongo/shell/collection.js:189:22)
        at printShardingStatus (src/mongo/shell/shardingtest.js:659:55)
        at Function.sh.status (src/mongo/shell/utils_sh.js:60:5)
        at (shell):1:4 at src/mongo/shell/query.js:259
    mongos> use admin
    switched to db admin
    mongos> db.auth('dba','dba')   #认证
    1
    mongos> sh.status()            #有权限
    --- Sharding Status --- 
      sharding version: {
        "_id" : 1,
        "minCompatibleVersion" : 5,
        "currentVersion" : 6,
        "clusterId" : ObjectId("55a51ef18bd517d4acec5ef9")
    }
      shards:
        {  "_id" : "mablevi",  "host" : "mablevi/192.168.200.53:50000,192.168.200.53:50001,192.168.200.53:50002" }
        {  "_id" : "shard0000",  "host" : "192.168.200.51:40000" }
        {  "_id" : "shard0001",  "host" : "192.168.200.52:40000" }
        {  "_id" : "shard0002",  "host" : "192.168.200.53:40000" }
      balancer:
    ...
    ... databases: { "_id" : "admin", "partitioned" : false, "primary" : "config" } { "_id" : "test", "partitioned" : false, "primary" : "shard0000" } { "_id" : "dba", "partitioned" : true, "primary" : "shard0000" } dba.account shard key: { "name" : 1 } chunks: mablevi 1 shard0000 1 shard0001 2 shard0002 1 { "name" : { "$minKey" : 1 } } -->> { "name" : "9XXqCaBhfhPIXLq" } on : mablevi Timestamp(2, 0) { "name" : "9XXqCaBhfhPIXLq" } -->> { "name" : "RWINvgjYYQmbZds" } on : shard0002 Timestamp(4, 0) { "name" : "RWINvgjYYQmbZds" } -->> { "name" : "jSPRBNH8rvnzblG" } on : shard0001 Timestamp(4, 1) { "name" : "jSPRBNH8rvnzblG" } -->> { "name" : "okmjUUZuuKgftDC" } on : shard0001 Timestamp(3, 4) { "name" : "okmjUUZuuKgftDC" } -->> { "name" : { "$maxKey" : 1 } } on : shard0000 Timestamp(3, 1)
    复制代码

    七、分片备份、还原

    因为分片机制里面会有平衡器来迁移数据,所以各个分片里的数据很可能会移动,所以在备份分片时需要做:

    ①:先停止平衡器的工作,并检查没有chunk move动作,保证dump的时候没有进行数据迁移。

    mongos> sh.stopBalancer()

    ②:锁定数据库,保证数据没有写入:在各个分片上和配置服务器上执行。

    > db.fsyncLock()
    {
        "info" : "now locked against writes, use db.fsyncUnlock() to unlock",
        "seeAlso" : "http://dochub.mongodb.org/core/fsynccommand",
        "ok" : 1
    }

    ③:执行备份操作,备份各个分片服务器和配置服务器。

    mongodump -udba -p12345 -d dba_test --authenticationDatabase admin -o backup/

    ④:解锁数据库,备份完成之后在分片和配置服务器上解锁数据库,允许修改。

    > db.fsyncUnlock()
    { "ok" : 1, "info" : "unlock completed" }

    当数据库出现问题,需要还原的时候,需要还原各个分片和配置服务器,并且重启MongoDB实例。还原数据库需要做:

    ①:还原各个分片和配置服务器。

    mongorestore --host=127.0.0.1 --port=27017 -udba -p12345 -d dba_test --authenticationDatabase admin --drop backup/dba_test

    ②:重启各个实例

    总结:

          分片很好的解决了单台服务器磁盘空间、内存、cpu等硬件资源的限制问题,把数据水平拆分出去,降低单节点的访问压力。每个分片都是一个独立的数据库,所有的分片组合起来构成一个逻辑上的完整的数据库。因此,分片机制降低了每个分片的数据操作量及需要存储的数据量,达到多台服务器来应对不断增加的负载和数据的效果。后面文章还会继续对分片的其他方面进行说明介绍。

    参考文档:

    说明:http://docs.mongodb.org/manual/core/sharding-introduction/

    配置:http://docs.mongodb.org/manual/tutorial/deploy-shard-cluster/

    应用:http://www.caiyiting.com/blog/2014/replica-sets-sharding-realization.html

     
  • 相关阅读:
    JAVA EE获取浏览器和操作系统信息
    ANT与SVN集成
    ANT property三种使用方式
    跨机器的文件夹访问和传输方法
    yolov5网络结构分析
    点到直线距离计算及g++编译
    深拷贝与浅拷贝(c++和python)
    qt工程环境设置
    Git 篇
    PyCharm 使用的技巧
  • 原文地址:https://www.cnblogs.com/ExMan/p/9551579.html
Copyright © 2011-2022 走看看