zoukankan      html  css  js  c++  java
  • 51Nod1514 美妙的序列

    题目看这里

    需要开一个新的分类了,生成函数相关

    这道题确实非常的入门

    分析得知,不合法方案就是存在一个i<n使得s[1..i]是一个1..i的排列

    那么设f[n]表示n的答案,可以得到f[n]=n!-∑f[i]*(n-i)!  (i<n)

    移项得到∑f[i]*(n-i)!=n! (i<=n)

    发现可以生成函数

    设F(x)=∑f[i]*x^i, G(x)=∑i!*x^i (i=1..∞)

    根据上面那条式子得到F(x)*G(x)=G(x)-1

    得到F(x)=1-1/G(x) 求逆就好了

    当然如果不用生成函数,也可以直接用上面的式子做分治FFT,复杂度会多一个log

    #pragma GCC optimize("O3")
    #pragma G++ optimize("O3")
    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    #define N 280010
    #define M 998244353
    #define LL long long
    using namespace std;
    int W[N],iW[N];
    inline LL pow(LL x,LL k,LL s=1){
        for(;k;x=x*x%M,k>>=1) k&1?s=s*x%M:0;
        return s;
    }
    inline void init(){
        for(int j=1;j<=N;j<<=1){
            W[j]=pow(3,(M-1)/j);
            iW[j]=pow(W[j],M-2);
        }
    }
    inline void NTT(int* A,int n,int g){
        static int b[N];
        for(int i=0,j,k,t;i<n;++i){
            for(j=0,k=i,t=n-1;t;t>>=1,k>>=1) 
                j=(j<<1)|(k&1);
            b[j]=A[i];
        }
        for(int m=2;m<=n;m<<=1){
            LL w=g?W[m]:iW[m],u,v,z;
            for(int i,k=m>>1,j=0;j<n;j+=m)
                for(z=1,i=0;i<k;++i,z=z*w%M){
                    u=b[i+j]; v=z*b[i+j+k]%M;
                    b[i+j]=(u+v)%M; b[i+j+k]=(u-v+M)%M;
                }
        }
        if(!g){
            g=pow(n,M-2);
            for(int i=0;i<n;++i) A[i]=(LL)b[i]*g%M;
        } else memcpy(A,b,n<<2);
    }
    struct poly{
        int n,a[N];
        inline int len(){ return n; }
        inline int& operator[] (int i){ return a[i]; }
        inline void trans(int* b,int m){
            n=m; memcpy(a,b,m+1<<2);
        }
    };
    inline poly operator+ (poly a,poly b){
        poly c; c.n=max(a.n,b.n);
        for(int i=0;i<=c.n;++i)
            c[i]=(a[i]+b[i])%M;
        return c;
    }
    inline poly operator- (poly a,poly b){
        poly c; c.n=max(a.n,b.n);
        for(int i=0;i<=c.n;++i)
            c[i]=(a[i]-b[i]+M)%M;
        return c;
    }
    inline poly operator* (poly a,poly b){
        poly c; c.n=a.n+b.n;
        if((LL)a.n*b.n<=-1){
            for(int i=0;i<=a.n;++i)
                for(int j=0;j<=b.n;++j)
                    c[i+j]=(c[i+j]+(LL)a[i]*b[j])%M;
            return c;
        }
        int n=1; for(;n<=c.n;n<<=1);
        static int A[N],B[N];
        memset(A,0,n<<2);
        memset(B,0,n<<2);
        memcpy(A,a.a,a.n+1<<2);
        memcpy(B,b.a,b.n+1<<2);
        NTT(A,n,1); NTT(B,n,1);
        for(int i=0;i<n;++i) A[i]=(LL)A[i]*B[i]%M;
        NTT(A,n,0);
        c.trans(A,c.n); return c;
    }
    int v[N],iA[N],iB[N];
    inline void gInv(int n){
        if(n==1){ *iA=pow(*v,M-2); return; }
        gInv(n+1>>1);
        int m=1; for(;m<n+n+3;m<<=1);
        for(int i=n;i<m;++i) iA[i]=iB[i]=0;
        memcpy(iB,v,n<<2);
        NTT(iA,m,1); NTT(iB,m,1);
        for(int i=0;i<m;++i)
            iA[i]=iA[i]*(M+2-((LL)iA[i]*iB[i]%M))%M;
        NTT(iA,m,0);
        for(int i=n;i<m;++i) iA[i]=0;
    }
    inline poly operator~ (poly x){
        poly y; y.n=x.n;
        for(int i=0;i<=x.n;++i) v[i]=x[i];
        gInv(x.n+1);
        y.trans(iA,x.n);
        return y;
    }
    inline void div(poly a,poly b,poly& d,poly& r){
        int n=a.n,m=b.n;
        if(n<m){ d.n=d[0]=0; r=a; return; }
        int len=1; for(;len<n+n;len<<=1);
        poly ra=a,rb=b;
        reverse(ra.a,ra.a+n+1);
        reverse(rb.a,rb.a+m+1);
        for(int i=n-m+1;i<=rb.n;++i) rb[i]=0;
        rb.n=n-m; rb=~rb;
        d=ra*rb; d.n=n-m; reverse(d.a,d.a+d.n+1);
        r=a-(b*d); for(r.n=m;!r[r.n];r.n--);
    }
    inline poly operator/ (poly a,poly b){poly d,r; div(a,b,d,r); return d;}
    inline poly operator% (poly a,poly b){poly d,r; div(a,b,d,r); return r;}
    
    inline void input(poly& a){
        int n,s[10000];
        scanf("%d",&n);
        for(int i=0;i<n;++i) scanf("%d",s+i);
        a.trans(s,n-1);
    }
    inline void output(poly a){
        for(int i=0;i<=a.n;++i)
            printf("%d ",a[i]);
        puts("");
    }
    poly a;
    int main(){
        init(); int m=120010; a[0]=1; a.n=m-1;
        for(int i=1;i<m;++i) a[i]=(LL)a[i-1]*i%M;
        a=~a;
        for(int i=0;i<m;++i) a[i]=(M-a[i])%M;
        ++a[0]; int T; scanf("%d",&T);
        for(int x;T--;printf("%d
    ",a[x])) scanf("%d",&x);
    } 

  • 相关阅读:
    JDK中ClassLoader的分类以及ClassLoader间的层次关系
    java动态加载机制
    hibernate_boolean类型的处理
    hibernate_annotation字段映射位置
    hibernate基本配置
    hibernate3.3.2搭建Junit日志环境
    hibernate基本配置show_sql、sql_format
    hibernate3.3.2搭建log4j日志环境
    ios错误ignoring file xxx missing required architecture x86_64 in file
    转载 【iOS开发】网页JS与OC交互(JavaScriptCore) OC ----->JS
  • 原文地址:https://www.cnblogs.com/Extended-Ash/p/9477101.html
Copyright © 2011-2022 走看看