题目:
There are two strings A and B with equal length. Both strings are made up of lower case letters.
Now you have a powerful string painter. With the help of the painter, you can change a segment of
characters of a string to any other character you want. That is, after using the painter, the segment is
made up of only one kind of character. Now your task is to change A to B using string painter. What’s
the minimum number of operations?
Input
Input contains multiple cases. Each case consists of two lines:
• The first line contains string A.
• The second line contains string B.
The length of both strings will not be greater than 100.
Output
A single line contains one integer representing the answer.
Sample Input
zzzzzfzzzzz
abcdefedcba
abababababab
cdcdcdcdcdcd
Sample Output
6
7
题意:
有第一个串,变成第二个串,需要最少多少步操作,每次操作可以把一个任意区间涂成一样的颜色。
题解:
如果直接dp一下,那么会有在两种转移方式,当第一个串的第i个和第二个串的第i个,sum【i】=sum【i-1】.这个比较简单。
但是如果不相等那,如果是sum【i】=sum【i-1】+1;那显然是错误的,如果,刷第i段的时候,可以和前面的某一部分一起刷,那么就会多算一次。
那么怎么算那,可以直接暴力枚举一下,sum【i】=min(sum【i】,sum【j】+dp【j+1】【i】)j 属于(0--i)
这样每次不相等,都从前面枚举一遍。这也是一种套路题,很多题都是这么做。但这道题的最佳dp【j+1】【i】没有给出来。也没有从前面得到。所以只能自己算一下,由空白串到第二个串的最佳刷的次数是多少,用一个区间dp求一下,每到遇到两个相同的颜色,就可以优化一下,一起刷。一直优化到最后。
代码:
#include<bits/stdc++.h> #define endl ' ' using namespace std; typedef long long ll; typedef double db; typedef pair<int,int> pii; typedef vector<int> vi; #define check system("pause") #define all(x) (x).begin(),(x).end() #define de(a) cout<<#a<<" = "<<a<<endl #define dd(a) cout<<#a<<" = "<<a<<" " #define mp make_pair #define pb push_back #define fi first #define se second #define lowbit(a) ((a)&-(a)) #define INF 0x3f3f3f3f const ll mod = 1e9+7; const int N = 101; #define dep(i,a,b) for(int i=(a);i>=(b);i--) #define rep(i,a,b) for(int i=(a);i<=(b);i++) #define mes(p,b) memset(p,b,sizeof(p)) #define sz(x) int(x.size()) //8.43 int dp[101][N];char a[N],b[N]; int main() { ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); int n; while(cin>>a>>b){ n=strlen(a)-1; int sum[N]; mes(dp,0x3f); rep(i,0,n) dp[i][i]=1; rep(len,2,n+1) for(int i=0;i+len-1<=n;i++){ int j=i+len-1; if(b[i]==b[j]) dp[i][j]=dp[i][j-1]; else rep(w,i,j-1){ dp[i][j]=min(dp[i][j],dp[i][w]+dp[w+1][j]); } } rep(i,0,n) sum[i]=dp[0][i]; sum[0]=!(a[0]==b[0]); rep(i,1,n){ if(b[i]==a[i]) sum[i]=sum[i-1]; else{ rep(j,0,i-1) sum[i]=min(sum[i],sum[j]+dp[j+1][i]); } } cout<<sum[n]<<endl; } return 0; }