来自FallDream的博客,未经允许,请勿转载,谢谢,
给定一个序列A[i],每次询问l,r,求[l,r]内最长子串,使得该子串为不上升子串或不下降子串
n,q<=50000
线段树维护区间左右是谁,从左端开始/到右端结束的最长上升/下降子串长度即可。
复杂度nlogn
#include<iostream> #include<cstdio> #define MN 50000 using namespace std; inline int read() { int x = 0 , f = 1; char ch = getchar(); while(ch < '0' || ch > '9'){ if(ch == '-') f = -1; ch = getchar();} while(ch >= '0' && ch <= '9'){x = x * 10 + ch - '0';ch = getchar();} return x * f; } struct data{int l1,l2,r1,r2,ans,L,R,len; data(){} data(int x){l1=l2=r1=r2=ans=len=1;L=R=x;} friend data operator +(const data&a,const data&b) { data c;c.L=a.L;c.R=b.R;c.len=a.len+b.len; c.ans=max(max(a.ans,b.ans),max(a.r2,b.l2)); if(b.L>=a.R) c.ans=max(c.ans,a.r1+b.l1); if(b.L<=a.R) c.ans=max(c.ans,a.r2+b.l2); c.l1=a.l1==a.len?a.l1+(b.L>=a.R?b.l1:0):a.l1; c.l2=a.l2==a.len?a.l2+(b.L<=a.R?b.l2:0):a.l2; c.r1=b.r1==b.len?b.r1+(b.L>=a.R?a.r1:0):b.r1; c.r2=b.r2==b.len?b.r2+(b.L<=a.R?a.r2:0):b.r2; return c; } }; struct Tree{int l,r;data x;}T[MN*4+5]; int n,m,a[MN+5]; void build(int x,int l,int r) { if((T[x].l=l)==(T[x].r=r)){T[x].x=data(a[l]);return;} int mid=l+r>>1; build(x<<1,l,mid);build(x<<1|1,mid+1,r); T[x].x=T[x<<1].x+T[x<<1|1].x; } data Query(int x,int l,int r) { if(T[x].l==l&&T[x].r==r) return T[x].x; int mid=T[x].l+T[x].r>>1; if(r<=mid) return Query(x<<1,l,r); else if(l>mid) return Query(x<<1|1,l,r); else return Query(x<<1,l,mid)+Query(x<<1|1,mid+1,r); } int main() { n=read(); for(int i=1;i<=n;++i)a[i]=read(); m=read();build(1,1,n); for(int i=1;i<=m;++i) { int l=read(),r=read(); data x=Query(1,l,r); x.ans=max(x.ans,max(x.l1,x.l2)); x.ans=max(x.ans,max(x.r1,x.r2)); printf("%d ",x.ans); } return 0; }