http://acm.fzu.edu.cn/problem.php?pid=1402
逗比题..和前面那题一样解就行了...
反正都是素数,就把中国剩余定理拓展一下...普及姿势好了:
逆元:
对于同余方程 :
我们有 :
x就是A对B的逆元了 用EX_GCD求出x即可 ,这里x可能为负数, 对B做正取模
中国剩余定理 :
对于方程组
我们有如下性质
然后带公式即可
/********************* Template ************************/ #include <set> #include <map> #include <list> #include <cmath> #include <ctime> #include <deque> #include <queue> #include <stack> #include <bitset> #include <cstdio> #include <string> #include <vector> #include <cassert> #include <cstdlib> #include <cstring> #include <sstream> #include <fstream> #include <numeric> #include <iomanip> #include <iostream> #include <algorithm> #include <functional> using namespace std; #define EPS 1e-8 #define MAXN 1005 #define MOD (int)1e9+7 #define PI acos(-1.0) #define DINF (1e10) #define LINF ((1LL)<<50) #define INF (0x3f3f3f3f) #define max(a,b) ((a) > (b) ? (a) : (b)) #define min(a,b) ((a) < (b) ? (a) : (b)) #define max3(a,b,c) (max(max(a,b),c)) #define min3(a,b,c) (min(min(a,b),c)) #define BUG cout<<"BUG! "<<endl #define line cout<<"--------------"<<endl #define L(t) (t << 1) #define R(t) (t << 1 | 1) #define Mid(a,b) ((a + b) >> 1) #define lowbit(a) (a & -a) #define FIN freopen("in.txt","r",stdin) #define FOUT freopen("out.txt","w",stdout) #pragma comment (linker,"/STACK:102400000,102400000") typedef long long LL; // typedef unsigned long long ULL; // typedef __int64 LL; // typedef unisigned __int64 ULL; LL gcd(LL a,LL b){ return b ? gcd(b,a%b) : a; } LL lcm(LL a,LL b){ return a / gcd(a,b) * b; } /********************* F ************************/ pair<LL,LL> ex_gcd(LL a,LL b){ if(b == 0) return make_pair(1,0); pair<LL,LL> t = ex_gcd(b,a%b); return make_pair(t.second , t.first - (a / b) * t.second); } LL China_Remainder(LL a[],LL b[],int n){ LL res = 0,det = 1; for(int i = 0 ; i < n ; i++) det *= a[i]; for(int i = 0 ; i < n ; i++){ LL xx = det / a[i]; pair<LL,LL> t = ex_gcd(xx,a[i]); t.first = (t.first % a[i] + a[i]) % a[i]; // 求xx对a[i]的逆元 ,最后对a[i]取模 res = (res + (xx * b[i] * t.first) % det) % det; } return res; } int main() { int n; while(cin>>n){ LL a[20],b[20]; for(int i = 0 ; i < n ; i++){ cin>>a[i]>>b[i]; } LL ans = China_Remainder(a,b,n); cout<<ans<<endl; } return 0; }