zoukankan      html  css  js  c++  java
  • CodeChef November Challenge 2013 部分题解

    http://www.codechef.com/NOV13 还在比...我先放一部分题解吧...

    Uncle Johny 排序一遍

    struct node{
        int val;
        int pos;
    }a[MAXN];
    int cmp(node a,node b){
        return a.val < b.val;
    }
    int main(){
        int T,n,m;
        while(cin>>T){
            while(T--){
                cin>>n;
                for(int i = 0 ; i < n ; i++){
                    cin>>a[i].val;
                    a[i].pos = i+1;
                }
                cin>>m;
                sort(a,a+n,cmp);
                for(int i = 0 ; i < n ; i++){
                    if(a[i].pos == m){
                        cout<<i+1<<endl;
                        break;
                    }
                }
            }
        }
        return 0;
    }

    Missing some chairs 简单快速幂

    LL pow_mod(LL a, LL b){
        if(b == 1) return a;
        LL x = pow_mod(a,b/2),ret;
        if(b&1){
            ret = ((x * x)%MOD * a) % MOD;
        }else ret  = (x * x) % MOD;
        return ret;
    }
    int main(){
        int T;
        cin>>T;
        while(T--){
            LL n;
            cin>>n;
            LL c = pow_mod(2,n);
            cout<<c-1<<endl;
        }
        return 0;
    }

    Yet Another Cute Girl

    因子个数为素数的可能只有可能是pi^(pj-1)次幂..其中p是素数

    对于pj=2,区间素数筛,筛到sqrt(N)就行了...有O(n)的做法但我懒得写...其他的情况直接处理[L,R]内pi^(pj-1)的个数,加起来即可...

    考虑到pow可能爆LL,这个很坑..我应该是卡过的...

    LL cnt;
    bool prime[MAXN];
    LL pri[MAXN];
    bool p[MAXN];
    LL L,R;
    void pre_prime(){
        cnt = 0;
        prime[0] = prime[1] = 1;
        for(int i = 2 ; i < MAXN ; i++){
            if(!prime[i]) pri[cnt++] = i;
            for(int j = 0 ; j < cnt && i * pri[j] <= MAXN ; j++){
                prime[i * pri[j]] = 1;
                if(i % pri[j] == 0) break;
            }
        }
    }
    LL mpow(LL a, LL b){
        LL ret = 1;
        for(LL i = 0 ; i < b ; i++){
            LL tmp = ret * a;
            if(tmp > LINF || tmp < ret) return -1;
            ret = tmp;
        }
        return ret;
    }
    LL solve(){
        LL ct = 0;
        mem(p,0);
        for(LL i = 1 ; i < cnt ; i++){
            for(LL j = 0 ; j < cnt ; j++){
                LL q = mpow(pri[j],pri[i]-1);
                if(q == -1) break;
                if(q >= L && q <= R){
                    ct++;
                }
            }
        }
        for(LL j = 0 ; j < cnt ; j++){
            LL i;
            L % pri[j] == 0 ?  i = L : i = (L/pri[j]+1)*pri[j];
            if(i < MAXN && prime[i] == 0) i = i*2;
            for(i ; i <= R ; i+=pri[j]) p[i-L] = true;
        }
        for(LL i = L ; i <= R ; i++){
            if(p[i-L] == false && i != 1){
                ct++;
            }
        }
        return ct;
    }
    int main(){
        pre_prime();
        int T;
        cin>>T;
        while(T--){
            cin>>L>>R;
            LL res = solve();
            cout<<res<<endl;
        }
        return 0;
    }

    Square Digit Squares 预处理一遍完全平方数,就没多少个

    LL a[MAXN];
    int cnt = 0;
    bool judge(LL x){
        while(x){
            LL y = x%10;
            if(y != 1 && y != 0 && y != 4 && y != 9) return false;
            x/=10;
        }
        return true;
    }
    void pre(){
        for(LL i = 1 ; i*i <= (LL)pow((LL)10,(LL)10)+50 ; i++){
            if(judge(i*i)){
                a[cnt++] = i*i;
            }
        }
    }
    int main(){
        pre();
        int T;
        cin>>T;
        while(T--){
            LL ax,bx;
            cin>>ax>>bx;
            int ct = 0;
            for(int i = 0 ; i < cnt ; i++)
                if(a[i] >= ax && a[i] <= bx) ct++;
            cout<<ct<<endl;
        }
        return 0;
    }

    Superpowers of 2 还是幂取模,一套题出两次我就不吐槽了,也许LL会WA

    ULL change(ULL a){
        ULL ret = 0;
        int p[100],cnt = 0;
        while(a){
            p[cnt++] = a%2;
            a/=2;
        }
        for(int i = cnt-1 ; i >= 0 ; i--){
            ret = ret * 10 + p[i];
        }
        return ret;
    }
    ULL pow_mod(ULL a, ULL b){
        if(b == 1) return a;
        ULL x = pow_mod(a,b/2),ret;
        if(b&1) ret = ((x * x)%MOD * a) % MOD;
        else ret  = (x * x) % MOD;
        return ret;
    }
    int main(){
        int T;
        cin>>T;
        while(T--){
            int n;
            cin>>n;
            ULL x = pow_mod(2,change(n));
            cout<<(x*x)%MOD<<endl;
        }
        return 0;
    }
  • 相关阅读:
    防删没什么意思啊,直接写废你~
    绝大多数情况下,没有解决不了的问题,只有因为平时缺少练习而惧怕问题的复杂度,畏惧的心理让我们选择避让,采取并不那么好的方案去解决问题
    Java 模拟面试题
    Crossthread operation not valid: Control 'progressBar1' accessed from a thread other than the thread it was created on
    一步步从数据库备份恢复SharePoint Portal Server 2003
    【转】理解 JavaScript 闭包
    Just For Fun
    The database schema is too old to perform this operation in this SharePoint cluster. Please upgrade the database and...
    Hello World!
    使用filter筛选刚体碰撞
  • 原文地址:https://www.cnblogs.com/Felix-F/p/3414705.html
Copyright © 2011-2022 走看看