zoukankan      html  css  js  c++  java
  • PAT 1004 Counting Leaves

    1004 Counting Leaves (30分)

    A family hierarchy is usually presented by a pedigree tree. Your job is to count those family members who have no child.

    Input Specification:

    Each input file contains one test case. Each case starts with a line containing 0<N<100, the number of nodes in a tree, and M (<N), the number of non-leaf nodes. Then M lines follow, each in the format:

    ID K ID[1] ID[2] ... ID[K]
    
     

    where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 01.

    The input ends with N being 0. That case must NOT be processed.

    Output Specification:

    For each test case, you are supposed to count those family members who have no child for every seniority level starting from the root. The numbers must be printed in a line, separated by a space, and there must be no extra space at the end of each line.

    The sample case represents a tree with only 2 nodes, where 01 is the root and 02 is its only child. Hence on the root 01 level, there is 0 leaf node; and on the next level, there is 1 leaf node. Then we should output 0 1 in a line.

    Sample Input:

    2 1
    01 1 02
    
     

    Sample Output:

    0 1
    时间限制: 400 ms
    内存限制: 64 MB
    代码长度限制: 16 KB
     

    思路

    使用邻接表存储孩子节点,使用BFS层序遍历判断是否叶子节点,如果该节点邻接表为空,说明是该节点是叶子节点;否则,将其所有孩子节点入队。

     

     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <vector>
     4 #include <queue>
     5 #include <string.h>
     6 
     7 using namespace std;
     8 
     9 struct Node
    10 {
    11     int val;
    12     int level = 0;
    13 };
    14 
    15 int cnt[110];    //cnt[i]表示第i层的叶子节点数 
    16 int totalLevel;
    17 
    18 int main()
    19 {
    20     int n, m, k;
    21     while(scanf("%d", &n) != EOF)
    22     {
    23         if(n == 0)
    24             break;
    25         
    26         vector<Node> adjList[110];  //邻接表
    27         queue<Node> Q;
    28         memset(cnt, 0, sizeof(cnt));
    29         
    30         scanf("%d", &m);
    31         
    32         if(n == 1)
    33         {
    34             //只有1个节点,直接输出1 
    35             cout << 1;
    36             continue;
    37         }
    38         for(int i = 0; i < m; ++i)
    39         {
    40             Node id;
    41             int k;
    42             scanf("%d%d", &id.val, &k);
    43             if(id.val == 01)
    44                 Q.push(id);    //根节点入队 
    45             for(int i = 1; i <= k; ++i)
    46             {
    47                 Node child;
    48                 scanf("%d", &child.val);
    49                 //建立邻接表 
    50                 adjList[id.val].push_back(child);
    51             }
    52         } 
    53         
    54         //层序遍历,BFS 
    55         while(!Q.empty())
    56         {
    57             Node p = Q.front();
    58             Q.pop();
    59             
    60             //存储最后的总层数,方便最后输出结果 
    61             totalLevel = p.level;
    62             
    63             if(adjList[p.val].empty())
    64             {
    65                 cnt[p.level]++; //当前层的叶子节点数加一 
    66             }
    67             else
    68             {
    69                 //遍历孩子节点 
    70                 for(int i = 0; i < adjList[p.val].size(); ++i)
    71                 {
    72                     adjList[p.val][i].level = p.level + 1;
    73                     Q.push(adjList[p.val][i]); 
    74                 }
    75             } 
    76         } 
    77         
    78         for(int i = 0; i <= totalLevel; ++i)
    79         {
    80             if(i == totalLevel)
    81                 cout <<  cnt[i];
    82             else
    83                 cout <<  cnt[i] << ' ';
    84         }
    85         
    86     }    
    87 
    88     return 0;
    89 }
  • 相关阅读:
    二分查找算法
    Python基础二(基础数据类型)
    Python基础一
    mysql 数据库
    Scrapy (网络爬虫框架)入门
    列表推导式的使用
    Scrapy(爬虫框架)中,Spider类中parse()方法的工作机制
    vim 基础命令大全
    windows cmd 命令大全
    类与类的关系一
  • 原文地址:https://www.cnblogs.com/FengZeng666/p/12570854.html
Copyright © 2011-2022 走看看