zoukankan      html  css  js  c++  java
  • Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers

    http://poj.org/problem?id=2739

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 28929   Accepted: 15525

    Description

    Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime 
    numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20. 
    Your mission is to write a program that reports the number of representations for the given positive integer.

    Input

    The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.

    Output

    The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.

    Sample Input

    2
    3
    17
    41
    20
    666
    12
    53
    0

    Sample Output

    1
    1
    2
    3
    0
    0
    1
    2

    Source

     1 #include<iostream>
     2 #include<cstring>
     3 #include<algorithm>
     4 #include<cmath>
     5 #include<string>
     6 #include<vector>
     7 #include<cstdio>
     8 #include<queue>
     9 #include<stack>
    10 #define PI acos(-1.0)
    11 #define eps 1e-9
    12 using namespace std;
    13 int prime[150001];//存素数 
    14 bool vis[150001];//保证不做素数的倍数 
    15 void dabiao(int n){
    16     int cnt = 0;
    17     memset(vis, false, sizeof(vis));//初始化 
    18     memset(prime, 0, sizeof(prime));
    19     for(int i = 2; i <= n; i++)
    20     {
    21         if(!vis[i])//不是目前找到的素数的倍数 
    22         prime[cnt++] = i;//找到素数~ 
    23         for(int j = 0; j<cnt && i*prime[j]<=n; j++)
    24         {
    25             vis[i*prime[j]] = true;//找到的素数的倍数不访问 
    26             if(i % prime[j] == 0) break;//关键!!!! 
    27         }
    28     }
    29 }
    30 
    31 int main(){
    32 
    33     dabiao(105000);
    34     int n;
    35     while(~scanf("%d",&n)){
    36         if(!n) break;
    37         int L=0,R=0;
    38         int ans=0;
    39         int sum=0;
    40         int pos=upper_bound(prime,prime+10005,n)-prime;
    41         while(L<=R){
    42             
    43             if(ans<=n&&R<pos){
    44                 ans+=prime[R++];
    45             }
    46             else if(ans>n||R==pos){
    47                 ans-=prime[L++];
    48             }
    49             if(ans==n){
    50                 sum++;
    51             }
    52         }
    53         printf("%d
    ",sum);
    54     }
    55 
    56 
    57 }
    View Code
  • 相关阅读:
    StampedLock
    面试题:final关键字
    VTK 图像处理_显示(vtkImageViewer2 & vtkImageActor)
    VTK 图像处理_创建
    VTK 数据读写_图像数据的读写
    VTK 基本数据结构_如何把几何结构&拓扑结构加入到数据集
    VTK 基本数据结构_数据对象&数据集
    VTK 可视化管道的连接与执行
    VTK 坐标系统及空间变换(窗口-视图分割)
    VTK 三维场景基本要素:相机
  • 原文地址:https://www.cnblogs.com/Fighting-sh/p/10041395.html
Copyright © 2011-2022 走看看