zoukankan      html  css  js  c++  java
  • Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers

    http://poj.org/problem?id=2739

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 28929   Accepted: 15525

    Description

    Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime 
    numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20. 
    Your mission is to write a program that reports the number of representations for the given positive integer.

    Input

    The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.

    Output

    The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.

    Sample Input

    2
    3
    17
    41
    20
    666
    12
    53
    0

    Sample Output

    1
    1
    2
    3
    0
    0
    1
    2

    Source

     1 #include<iostream>
     2 #include<cstring>
     3 #include<algorithm>
     4 #include<cmath>
     5 #include<string>
     6 #include<vector>
     7 #include<cstdio>
     8 #include<queue>
     9 #include<stack>
    10 #define PI acos(-1.0)
    11 #define eps 1e-9
    12 using namespace std;
    13 int prime[150001];//存素数 
    14 bool vis[150001];//保证不做素数的倍数 
    15 void dabiao(int n){
    16     int cnt = 0;
    17     memset(vis, false, sizeof(vis));//初始化 
    18     memset(prime, 0, sizeof(prime));
    19     for(int i = 2; i <= n; i++)
    20     {
    21         if(!vis[i])//不是目前找到的素数的倍数 
    22         prime[cnt++] = i;//找到素数~ 
    23         for(int j = 0; j<cnt && i*prime[j]<=n; j++)
    24         {
    25             vis[i*prime[j]] = true;//找到的素数的倍数不访问 
    26             if(i % prime[j] == 0) break;//关键!!!! 
    27         }
    28     }
    29 }
    30 
    31 int main(){
    32 
    33     dabiao(105000);
    34     int n;
    35     while(~scanf("%d",&n)){
    36         if(!n) break;
    37         int L=0,R=0;
    38         int ans=0;
    39         int sum=0;
    40         int pos=upper_bound(prime,prime+10005,n)-prime;
    41         while(L<=R){
    42             
    43             if(ans<=n&&R<pos){
    44                 ans+=prime[R++];
    45             }
    46             else if(ans>n||R==pos){
    47                 ans-=prime[L++];
    48             }
    49             if(ans==n){
    50                 sum++;
    51             }
    52         }
    53         printf("%d
    ",sum);
    54     }
    55 
    56 
    57 }
    View Code
  • 相关阅读:
    Solaris下批量kill掉oracle的session
    我写blog的方式变迁
    filezilla ftp client在win7 下获取ftp目录信息出错解决方法
    GNU System Monitor编译问题
    在vmware的Solaris虚拟机中安装vmtool
    关于golden gate director client的一点点使用总结
    测试 乱弹
    ORM的世界 (再补充)
    Yahoo Konfabulator
    轻量容器和注射依赖 的自实现
  • 原文地址:https://www.cnblogs.com/Fighting-sh/p/10041395.html
Copyright © 2011-2022 走看看