Harry Potter and J.K.Rowling
http://acm.hdu.edu.cn/showproblem.php?pid=3982
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1094 Accepted Submission(s): 357
Problem Description
In July 31st, last month, the author of the famous novel series J.K.Rowling celebrated her 46th birthday. Many friends gave their best wishes. They gathered together and shared one large beautiful cake.
Rowling had lots of friends, and she had a knife to cut the cake into many pieces. On the cake there was a cherry. After several cuts, the piece with the cherry was left for Rowling. Before she enjoyed it, she wondered how large this piece was, i.e., she wondered how much percentage of the cake the piece with the only cherry has.
Rowling had lots of friends, and she had a knife to cut the cake into many pieces. On the cake there was a cherry. After several cuts, the piece with the cherry was left for Rowling. Before she enjoyed it, she wondered how large this piece was, i.e., she wondered how much percentage of the cake the piece with the only cherry has.
Input
First line has an integer T, indicating the number of test cases.
T test cases follow. The first line of each test case has one number r (1 <= r <= 10000) and one integer n (0 <= n <= 2000), indicating the radius of the cake and the number of knife cuts. n lines follow. The i-th line has four numbers, x1, y1, x2, y2. (x1, y1) and (x2, y2) are two points on the i-th cut. (-10000 <= x1, y1, x2, y2 <= 10000) The last line of each case has two number x, y, indicating the coordinate(x, y) of the cherry.
Technical Specification
1. R, x1, y2, x2, y2, x, y all have two digits below decimal points.
2. The center of the cake is always on the point (0, 0).
3. The cherry was always on the cake and would not be on the knife cuts.
T test cases follow. The first line of each test case has one number r (1 <= r <= 10000) and one integer n (0 <= n <= 2000), indicating the radius of the cake and the number of knife cuts. n lines follow. The i-th line has four numbers, x1, y1, x2, y2. (x1, y1) and (x2, y2) are two points on the i-th cut. (-10000 <= x1, y1, x2, y2 <= 10000) The last line of each case has two number x, y, indicating the coordinate(x, y) of the cherry.
Technical Specification
1. R, x1, y2, x2, y2, x, y all have two digits below decimal points.
2. The center of the cake is always on the point (0, 0).
3. The cherry was always on the cake and would not be on the knife cuts.
Output
For each test case, in one line output the case number and the percentage the piece with the cherry has of whole original cake, rounded to five fractional digits.
Sample Input
1
1.00 2
-1.00 0.00 1.00 0.00
0.00 -1.00 0.00 1.00
0.50 0.50
Sample Output
Case 1: 25.00000%
附上测试数据,半平面交模板题
1 #include<cstdio> 2 #include<iostream> 3 #include<cstring> 4 #include<algorithm> 5 #include<cmath> 6 using namespace std; 7 const double eps=1e-8; 8 const double INF=1e20; 9 const double PI=acos(-1.0); 10 const int maxp=1010; 11 int sgn(double x){ 12 if(fabs(x)<eps) return 0; 13 if(x<0) return -1; 14 else return 1; 15 } 16 inline double sqr(double x){return x*x;} 17 struct Point{ 18 double x,y; 19 Point(){} 20 Point(double _x,double _y){ 21 x=_x; 22 y=_y; 23 } 24 void input(){ 25 scanf("%lf %lf",&x,&y); 26 } 27 void output(){ 28 printf("%.2f %.2f ",x,y); 29 } 30 bool operator == (const Point &b)const{ 31 return sgn(x-b.x) == 0 && sgn(y-b.y)== 0; 32 } 33 bool operator < (const Point &b)const{ 34 return sgn(x-b.x)==0?sgn(y-b.y)<0:x<b.x; 35 } 36 Point operator - (const Point &b)const{ 37 return Point(x-b.x,y-b.y); 38 } 39 //叉积 40 double operator ^ (const Point &b)const{ 41 return x*b.y-y*b.x; 42 } 43 //点积 44 double operator * (const Point &b)const{ 45 return x*b.x+y*b.y; 46 } 47 //返回长度 48 double len(){ 49 return hypot(x,y); 50 } 51 //返回长度的平方 52 double len2(){ 53 return x*x+y*y; 54 } 55 //返回两点的距离 56 double distance(Point p){ 57 return hypot(x-p.x,y-p.y); 58 } 59 Point operator + (const Point &b)const{ 60 return Point(x+b.x,y+b.y); 61 } 62 Point operator * (const double &k)const{ 63 return Point(x*k,y*k); 64 } 65 Point operator / (const double &k)const{ 66 return Point(x/k,y/k); 67 } 68 69 //计算pa和pb的夹角 70 //就是求这个点看a,b所成的夹角 71 ///LightOJ1202 72 double rad(Point a,Point b){ 73 Point p=*this; 74 return fabs(atan2(fabs((a-p)^(b-p)),(a-p)*(b-p))); 75 } 76 //化为长度为r的向量 77 Point trunc(double r){ 78 double l=len(); 79 if(!sgn(l)) return *this; 80 r/=l; 81 return Point(x*r,y*r); 82 } 83 //逆时针转90度 84 Point rotleft(){ 85 return Point(-y,x); 86 } 87 //顺时针转90度 88 Point rotright(){ 89 return Point(y,-x); 90 } 91 //绕着p点逆时针旋转angle 92 Point rotate(Point p,double angle){ 93 Point v=(*this) -p; 94 double c=cos(angle),s=sin(angle); 95 return Point(p.x+v.x*c-v.y*s,p.y+v.x*s+v.y*c); 96 } 97 }; 98 99 struct Line{ 100 Point s,e; 101 Line(){} 102 Line(Point _s,Point _e){ 103 s=_s; 104 e=_e; 105 } 106 bool operator==(Line v){ 107 return (s==v.s)&&(e==v.e); 108 } 109 //根据一个点和倾斜角angle确定直线,0<=angle<pi 110 Line(Point p,double angle){ 111 s=p; 112 if(sgn(angle-PI/2)==0){ 113 e=(s+Point(0,1)); 114 } 115 else{ 116 e=(s+Point(1,tan(angle))); 117 } 118 } 119 //ax+by+c=0; 120 Line(double a,double b,double c){ 121 if(sgn(a)==0){ 122 s=Point(0,-c/b); 123 e=Point(1,-c/b); 124 } 125 else if(sgn(b)==0){ 126 s=Point(-c/a,0); 127 e=Point(-c/a,1); 128 } 129 else{ 130 s=Point(0,-c/b); 131 e=Point(1,(-c-a)/b); 132 } 133 } 134 void input(){ 135 s.input(); 136 e.input(); 137 } 138 void adjust(){ 139 if(e<s) swap(s,e); 140 } 141 //求线段长度 142 double length(){ 143 return s.distance(e); 144 } 145 //返回直线倾斜角 0<=angle<pi 146 double angle(){ 147 double k=atan2(e.y-s.y,e.x-s.x); 148 if(sgn(k)<0) k+=PI; 149 if(sgn(k-PI)==0) k-=PI; 150 return k; 151 } 152 //点和直线的关系 153 //1 在左侧 154 //2 在右侧 155 //3 在直线上 156 int relation(Point p){ 157 int c=sgn((p-s)^(e-s)); 158 if(c<0) return 1; 159 else if(c>0) return 2; 160 else return 3; 161 } 162 //点在线段上的判断 163 bool pointonseg(Point p){ 164 return sgn((p-s)^(e-s))==0&&sgn((p-s)*(p-e))<=0; 165 } 166 //两向量平行(对应直线平行或重合) 167 bool parallel(Line v){ 168 return sgn((e-s)^(v.e-v.s))==0; 169 } 170 //两线段相交判断 171 //2 规范相交 172 //1 非规范相交 173 //0 不相交 174 int segcrossseg(Line v){ 175 int d1=sgn((e-s)^(v.s-s)); 176 int d2=sgn((e-s)^(v.e-s)); 177 int d3=sgn((v.e-v.s)^(s-v.s)); 178 int d4=sgn((v.e-v.s)^(e-v.s)); 179 if((d1^d2)==-2&&(d3^d4)==-2) return 2; 180 return (d1==0&&sgn((v.s-s)*(v.s-e))<=0|| 181 d2==0&&sgn((v.e-s)*(v.e-e))<=0|| 182 d3==0&&sgn((s-v.s)*(s-v.e))<=0|| 183 d4==0&&sgn((e-v.s)*(e-v.e))<=0); 184 } 185 //直线和线段相交判断 186 //-*this line -v seg 187 //2 规范相交 188 //1 非规范相交 189 //0 不相交 190 int linecrossseg(Line v){ 191 int d1=sgn((e-s)^(v.s-s)); 192 int d2=sgn((e-s)^(v.e-s)); 193 if((d1^d2)==-2) return 2; 194 return (d1==0||d2==0); 195 } 196 //两直线关系 197 //0 平行 198 //1 重合 199 //2 相交 200 int linecrossline(Line v){ 201 if((*this).parallel(v)) 202 return v.relation(s)==3; 203 return 2; 204 } 205 //求两直线的交点 206 //要保证两直线不平行或重合 207 Point crosspoint(Line v){ 208 double a1=(v.e-v.s)^(s-v.s); 209 double a2=(v.e-v.s)^(e-v.s); 210 return Point((s.x*a2-e.x*a1)/(a2-a1),(s.y*a2-e.y*a1)/(a2-a1)); 211 } 212 //点到直线的距离 213 double dispointtoline(Point p){ 214 return fabs((p-s)^(e-s))/length(); 215 } 216 //点到线段的距离 217 double dispointtoseg(Point p){ 218 if(sgn((p-s)*(e-s))<0||sgn((p-e)*(s-e))<0) 219 return min(p.distance(s),p.distance(e)); 220 return dispointtoline(p); 221 } 222 //返回线段到线段的距离 223 //前提是两线段不相交,相交距离就是0了 224 double dissegtoseg(Line v){ 225 return min(min(dispointtoseg(v.s),dispointtoseg(v.e)),min(v.dispointtoseg(s),v.dispointtoseg(e))); 226 } 227 //返回点P在直线上的投影 228 Point lineprog(Point p){ 229 return s+(((e-s)*((e-s)*(p-s)))/((e-s).len2())); 230 } 231 //返回点P关于直线的对称点 232 Point symmetrypoint(Point p){ 233 Point q=lineprog(p); 234 return Point(2*q.x-p.x,2*q.y-p.y); 235 } 236 }; 237 238 struct circle{ 239 Point p; 240 double r; 241 circle(){} 242 circle(Point _p,double _r){ 243 p=_p; 244 r=_r; 245 } 246 247 circle(double x,double y,double _r){ 248 p=Point(x,y); 249 r=_r; 250 } 251 252 circle(Point a,Point b,Point c){///三角形的外接圆 253 Line u=Line((a+b)/2,((a+b)/2)+((b-a).rotleft())); 254 Line v=Line((b+c)/2,((b+c)/2)+((c-b).rotleft())); 255 p=u.crosspoint(v); 256 r=p.distance(a); 257 } 258 259 circle(Point a,Point b,Point c,bool t){///三角形的内切圆 260 Line u,v; 261 double m=atan2(b.y-a.y,b.x-a.x),n=atan2(c.y-a.y,c.x-a.x); 262 u.s=a; 263 u.e=u.s+Point(cos((n+m)/2),sin((n+m)/2)); 264 v.s=b; 265 m=atan2(a.y-b.y,a.x-b.x),n=atan2(c.y-b.y,c.x-b.x); 266 v.e=v.s+Point(cos((n+m)/2),sin((n+m)/2)); 267 p=u.crosspoint(v); 268 r=Line(a,b).dispointtoseg(p); 269 } 270 271 void input(){ 272 p.input(); 273 scanf("%lf",&r); 274 } 275 276 void output(){ 277 printf("%.2f %.2f %.2f ",p.x,p.y,r); 278 } 279 280 bool operator==(circle v){ 281 return (p==v.p)&&sgn(r-v.r)==0; 282 } 283 284 bool operator<(circle v)const{ 285 return ((p<v.p)||((p==v.p)&&sgn(r-v.r)<0)); 286 } 287 288 double area(){ 289 return PI*r*r; 290 } 291 292 double circumference(){ ///周长 293 return 2*PI*r; 294 } 295 296 int relation(Point b){///点和圆的关系 0圆外 1圆上 2圆内 297 double dst=b.distance(p); 298 if(sgn(dst-r)<0) return 2; 299 else if(sgn(dst-r)==0) return 1; 300 return 0; 301 } 302 303 int relationseg(Line v){///线段和圆的关系,比较的是圆心到线段的距离和半径的关系 304 double dst=v.dispointtoseg(p); 305 if(sgn(dst-r)<0) return 2; 306 else if(sgn(dst-r)==0) return 1; 307 return 0; 308 } 309 310 int relationline(Line v){///直线和圆的关系,比较的是圆心到直线的距离和半径的关系 311 double dst=v.dispointtoline(p); 312 if(sgn(dst-r)<0) return 2; 313 else if(sgn(dst-r)==0) return 1; 314 return 0; 315 } 316 317 int relationcircle(circle v){///两圆的关系 5相离 4外切 3相交 2内切 1内含 318 double d=p.distance(v.p); 319 if(sgn(d-r-v.r)>0) return 5; 320 if(sgn(d-r-v.r)==0) return 4; 321 double l=fabs(r-v.r); 322 if(sgn(d-r-v.r)<0&&sgn(d-l)>0) return 3; 323 if(sgn(d-l)==0) return 2; 324 if(sgn(d-l)<0) return 1; 325 } 326 327 int pointcrosscircle(circle v,Point &p1,Point &p2){///求两个圆的交点,0没有交点 1一个交点 2两个交点 328 int rel=relationcircle(v); 329 if(rel == 1 || rel == 5) return 0; 330 double d=p.distance(v.p); 331 double l=(d*d+r*r-v.r*v.r)/2*d; 332 double h=sqrt(r*r-l*l); 333 Point tmp=p+(v.p-p).trunc(l); 334 p1=tmp+((v.p-p).rotleft().trunc(h)); 335 p2=tmp+((v.p-p).rotright().trunc(h)); 336 if(rel == 2 || rel == 4) return 1; 337 return 2; 338 } 339 340 int pointcrossline(Line v,Point &p1,Point &p2){///求直线和圆的交点,返回交点的个数 341 if(!(*this).relationline(v)) return 0; 342 Point a=v.lineprog(p); 343 double d=v.dispointtoline(p); 344 d=sqrt(r*r-d*d); 345 if(sgn(d)==0) { 346 p1=a; 347 p2=a; 348 return 1; 349 } 350 p1=a+(v.e-v.s).trunc(d); 351 p2=a-(v.e-v.s).trunc(d); 352 return 2; 353 } 354 355 int getcircle(Point a,Point b,double r1,circle &c1,circle &c2){///得到过a,b两点,半径为r1的两个圆 356 circle x(a,r1),y(b,r1); 357 int t=x.pointcrosscircle(y,c1.p,c2.p); 358 if(!t) return 0; 359 c1.r=c2.r=r; 360 return t; 361 } 362 363 int getcircle(Line u,Point q,double r1,circle &c1,circle &c2){///得到与直线u相切,过点q,半径为r1的圆 364 double dis = u.dispointtoline(q); 365 if(sgn(dis-r1*2)>0) return 0; 366 if(sgn(dis)==0) { 367 c1.p=q+((u.e-u.s).rotleft().trunc(r1)); 368 c2.p=q+((u.e-u.s).rotright().trunc(r1)); 369 c1.r=c2.r=r1; 370 return 2; 371 } 372 Line u1=Line((u.s+(u.e-u.s).rotleft().trunc(r1)),(u.e+(u.e-u.s).rotleft().trunc(r1))); 373 Line u2=Line((u.s+(u.e-u.s).rotright().trunc(r1)),(u.e+(u.e-u.s).rotright().trunc(r1))); 374 circle cc=circle(q,r1); 375 Point p1,p2; 376 if(!cc.pointcrossline(u1,p1,p2)) cc.pointcrossline(u2,p1,p2); 377 c1=circle(p1,r1); 378 if(p1==p2){ 379 c2=c1; 380 return 1; 381 } 382 c2=circle(p2,r1); 383 return 2; 384 } 385 386 int getcircle(Line u,Line v,double r1,circle &c1,circle &c2,circle &c3,circle &c4){///同时与直线u,v相切,半径为r1的圆 387 if(u.parallel(v)) return 0;///两直线平行 388 Line u1=Line(u.s+(u.e-u.s).rotleft().trunc(r1),u.e+(u.e-u.s).rotleft().trunc(r1)); 389 Line u2=Line(u.s+(u.e-u.s).rotright().trunc(r1),u.e+(u.e-u.s).rotright().trunc(r1)); 390 Line v1=Line(v.s+(v.e-v.s).rotleft().trunc(r1),v.e+(v.e-v.s).rotleft().trunc(r1)); 391 Line v2=Line(v.s+(v.e-v.s).rotright().trunc(r1),v.e+(v.e-v.s).rotright().trunc(r1)); 392 c1.r=c2.r=c3.r=c4.r=r1; 393 c1.p=u1.crosspoint(v1); 394 c2.p=u1.crosspoint(v2); 395 c3.p=u2.crosspoint(v1); 396 c4.p=u2.crosspoint(v2); 397 return 4; 398 } 399 400 int getcircle(circle cx,circle cy,double r1,circle &c1,circle &c2){///同时与不相交圆 cx,cy相切,半径为r1的圆 401 circle x(cx.p,r1+cx.r),y(cy.p,r1+cy.r); 402 int t=x.pointcrosscircle(y,c1.p,c2.p); 403 if(!t) return 0; 404 c1.r=c2.r=r1; 405 return t; 406 } 407 408 int tangentline(Point q,Line &u,Line &v){///过一点作圆的切线(先判断点和圆的关系) 409 int x=relation(q); 410 if(x==2) return 0; 411 if(x==1){ 412 u=Line(q,q+(q-p).rotleft()); 413 v=u; 414 return 1; 415 } 416 double d=p.distance(q); 417 double l=r*r/d; 418 double h=sqrt(r*r-l*l); 419 u=Line(q,p+((q-p).trunc(l)+(q-p).rotleft().trunc(h))); 420 v=Line(q,p+((q-p).trunc(l)+(q-p).rotright().trunc(h))); 421 return 2; 422 } 423 424 double areacircle(circle v){///求两圆相交的面积 425 int rel=relationcircle(v); 426 if(rel >= 4) return 0.0; 427 if(rel <= 2) return min(area(),v.area()); 428 double d=p.distance(v.p); 429 double hf=(r+v.r+d)/2.0; 430 double ss=2*sqrt(hf*(hf-r)*(hf-v.r)*(hf-d)); 431 double a1=acos((r*r+d*d-v.r*v.r)/(2.0*r*d)); 432 a1=a1*r*r; 433 double a2=acos((v.r*v.r+d*d-r*r)/(2.0*v.r*d)); 434 a2=a2*v.r*v.r; 435 return a1+a2-ss; 436 } 437 438 double areatriangle(Point a,Point b){///求圆和三角形pab的相交面积 439 if(sgn((p-a)^(p-b))==0) return 0.0; 440 Point q[5]; 441 int len=0; 442 q[len++]=a; 443 Line l(a,b); 444 Point p1,p2; 445 if(pointcrossline(l,q[1],q[2])==2){ 446 if(sgn((a-q[1])*(b-q[1]))<0) q[len++]=q[1]; 447 if(sgn((a-q[2])*(b-q[2]))<0) q[len++]=q[2]; 448 } 449 q[len++]=b; 450 if(len==4 && sgn((q[0]-q[1])*(q[2]-q[1]))>0) swap(q[1],q[2]); 451 double res=0; 452 for(int i=0;i<len-1;i++){ 453 if(relation(q[i])==0||relation(q[i+1])==0){ 454 double arg=p.rad(q[i],q[i+1]); 455 res+=r*r*arg/2.0; 456 } 457 else{ 458 res+=fabs((q[i]-p)^(q[i+1]-p))/2.0; 459 } 460 } 461 return res; 462 } 463 }; 464 465 struct polygon{ 466 int n; 467 Point p[1010]; 468 Line l[1010]; 469 void input(int _n){ 470 n=_n; 471 for(int i=0;i<n;i++){ 472 p[i].input(); 473 } 474 } 475 476 void add(Point q){ 477 p[n++]=q; 478 } 479 480 void getline(){ 481 for(int i=0;i<n;i++){ 482 l[i]=Line(p[i],p[(i+1)%n]); 483 } 484 } 485 486 struct cmp{ 487 Point p; 488 cmp(const Point &p0){p=p0;} 489 bool operator()(const Point &aa,const Point &bb){ 490 Point a=aa,b=bb; 491 int d=sgn((a-p)^(b-p)); 492 if(d==0){ 493 return sgn(a.distance(p)-b.distance(p))<0; 494 } 495 return d>0; 496 } 497 }; 498 499 void norm(){///进行极角排序 500 Point mi=p[0]; 501 for(int i=1;i<n;i++){ 502 mi=min(mi,p[i]); 503 sort(p,p+n,cmp(mi)); 504 } 505 } 506 507 void getconvex(polygon &convex){///得到第一种凸包的方法,编号为0~n-1,可能要特判所有点共点或共线的特殊情况 508 sort(p,p+n); 509 convex.n=n; 510 for(int i=0;i<min(n,2);i++){ 511 convex.p[i]=p[i]; 512 } 513 if(convex.n==2&&(convex.p[0]==convex.p[1])) convex.n--; 514 if(n<=2) return; 515 int &top=convex.n; 516 top=1; 517 for(int i=2;i<n;i++){ 518 while(top&&sgn((convex.p[top]-p[i])^(convex.p[top-1]-p[i]))<0) top--; 519 convex.p[++top]=p[i]; 520 } 521 int temp=top; 522 convex.p[++top]=p[n-2]; 523 for(int i=n-3;i>=0;i--){ 524 while(top!=temp&&sgn((convex.p[top]-p[i])^(convex.p[top-1]-p[i]))<=0) top--; 525 convex.p[++top]=p[i]; 526 } 527 if(convex.n==2&&(convex.p[0]==convex.p[1])) convex.n--; 528 convex.norm(); 529 } 530 531 void Graham(polygon &convex){///得到凸包的第二种方法 532 norm(); 533 int &top=convex.n; 534 top=0; 535 if(n==1){ 536 top=1; 537 convex.p[0]=p[0]; 538 return; 539 } 540 if(n==2){ 541 top=2; 542 convex.p[0]=p[0]; 543 convex.p[1]=p[1]; 544 if(convex.p[0]==convex.p[1]) top--; 545 return; 546 } 547 convex.p[0]=p[0]; 548 convex.p[1]=p[1]; 549 top=2; 550 for(int i=2;i<n;i++){ 551 while(top>1&&sgn((convex.p[top-1]-convex.p[top-2])^(p[i]-convex.p[top-2]))<=0) top--; 552 convex.p[top++]=p[i]; 553 } 554 if(convex.n==2 && (convex.p[0]==convex.p[1])) convex.n--; 555 } 556 557 bool inconvex(){///判断是不是凸的 558 bool s[3]; 559 memset(s,false,sizeof(s)); 560 for(int i=0;i<n;i++){ 561 int j=(i+1)%n; 562 int k=(j+1)%n; 563 s[sgn((p[j]-p[i])^(p[k]-p[i]))+1]=true; 564 if(s[0]&&s[2]) return false; 565 } 566 return true; 567 } 568 569 int relationpoint(Point q){///判断点和任意多边形的关系 3点上 2边上 1内部 0外部 570 for(int i=0;i<n;i++){ 571 if(p[i]==q) return 3; 572 } 573 getline(); 574 for(int i=0;i<n;i++){ 575 if(l[i].pointonseg(q)) return 2; 576 } 577 int cnt=0; 578 for(int i=0;i<n;i++){ 579 int j=(i+1)%n; 580 int k=sgn((q-p[j])^(p[i]-p[j])); 581 int u=sgn(p[i].y-q.y); 582 int v=sgn(p[j].y-q.y); 583 if(k>0&&u<0&&v>=0) cnt++; 584 if(k<0&&v<0&&u>=0) cnt--; 585 } 586 return cnt!=0; 587 } 588 589 void convexcnt(Line u,polygon &po){///直线u切割凸多边形左侧 注意直线方向 590 int &top=po.n; 591 top=0; 592 for(int i=0;i<n;i++){ 593 int d1=sgn((u.e-u.s)^(p[i]-u.s)); 594 int d2=sgn((u.e-u.s)^(p[(i+1)%n]-u.s)); 595 if(d1>=0) po.p[top++]=p[i]; 596 if(d1*d2<0)po.p[top++]=u.crosspoint(Line(p[i],p[(i+1)%n])); 597 } 598 } 599 600 double getcircumference(){///得到周长 601 double sum=0; 602 for(int i=0;i<n;i++){ 603 sum+=p[i].distance(p[(i+1)%n]); 604 } 605 return sum; 606 } 607 608 double getarea(){///得到面积 609 double sum=0; 610 for(int i=0;i<n;i++){ 611 sum+=(p[i]^p[(i+1)%n]); 612 } 613 return fabs(sum)/2; 614 } 615 616 bool getdir(){///得到方向 1表示逆时针 0表示顺时针 617 double sum=0; 618 for(int i=0;i<n;i++){ 619 sum+=(p[i]^p[(i+1)%n]); 620 } 621 if(sgn(sum)>0) return 1; 622 return 0; 623 } 624 625 Point getbarycentre(){///得到重心 626 Point ret(0,0); 627 double area=0; 628 for(int i=1;i<n-1;i++){ 629 double tmp=(p[i]-p[0])^(p[i+1]-p[0]); 630 if(sgn(tmp)==0) continue; 631 area+=tmp; 632 ret.x+=(p[0].x+p[i].x+p[i+1].x)/3*tmp; 633 ret.y+=(p[0].y+p[i].y+p[i+1].y)/3*tmp; 634 } 635 if(sgn(area)) ret =ret/area; 636 return ret; 637 } 638 639 double areacircle(circle c){///多边形和圆交的面积 640 double ans=0; 641 for(int i=0;i<n;i++){ 642 int j=(i+1)%n; 643 if(sgn((p[j]-c.p)^(p[i]-c.p))>=0) ans+=c.areatriangle(p[i],p[j]); 644 else ans-=c.areatriangle(p[i],p[j]); 645 } 646 return fabs(ans); 647 } 648 649 int relationcircle(circle c){///多边形和圆的关系 2圆完全在多边形内 1圆在多边形里面,碰到了多边形的边界 0其他 650 getline(); 651 int x=2; 652 if(relationpoint(c.p)!=1) return 0; 653 for(int i=0;i<n;i++){ 654 if(c.relationseg(l[i])==2) return 0; 655 if(c.relationseg(l[i])==1) x=1; 656 } 657 return x; 658 } 659 }; 660 661 double cross(Point a,Point b,Point c){///ab x ac 662 return (b-a)^(c-a); 663 } 664 665 double dot(Point a,Point b,Point c){///ab*ac; 666 return (b-a)*(c-a); 667 } 668 669 /*double minRectangleCover(polygon A){///最小矩形面积覆盖 A必须是凸包 670 if(A.n<3) return 0.0; 671 A.p[A.n]==A.p[0]; 672 double ans=-1; 673 int r=1,p=1,q; 674 for(int i=0;i<A.n;i++){ 675 676 } 677 }*/ 678 679 vector<Point> convexCut(const vector<Point>&ps,Point q1,Point q2){///直线切凸多边形,多边形是逆时针的,在q1q2的左侧 680 vector<Point>qs; 681 int n=ps.size(); 682 for(int i=0;i<n;i++){ 683 Point p1=ps[i],p2=ps[(i+1)%n]; 684 int d1=sgn((q2-q1)^(p1-q1)),d2=sgn((q2-q1)^(p2-q1)); 685 if(d1>=0) qs.push_back(p1); 686 if(d1*d2<0) qs.push_back(Line(p1,p2).crosspoint(Line(q1,q2))); 687 } 688 return qs; 689 } 690 691 struct halfplane:public Line{ 692 double angle; 693 halfplane(){} 694 halfplane(Point _s,Point _e){///表示向量s->e逆时针(左侧)的半平面 695 s=_s; 696 e=_e; 697 } 698 halfplane(Line v){ 699 s=v.s; 700 e=v.e; 701 } 702 void calcangle(){ 703 angle=atan2(e.y-s.y,e.x-s.x); 704 } 705 bool operator<(const halfplane &b)const{ 706 return angle<b.angle; 707 } 708 }; 709 710 struct halfplanes{ 711 int n; 712 halfplane hp[2020]; 713 Point p[2020]; 714 int que[2020]; 715 int st,ed; 716 void push(halfplane tmp){ 717 hp[n++]=tmp; 718 } 719 720 void unique(){///去重 721 int m=1; 722 for(int i=1;i<n;i++){ 723 if(sgn(hp[i].angle-hp[i-1].angle)!=0) hp[m++]=hp[i]; 724 else if(sgn((hp[m-1].e-hp[m-1].s)^(hp[i].s-hp[m-1].s))>0) hp[m-1]=hp[i]; 725 } 726 n=m; 727 } 728 bool halfplaneinsert(){ 729 for(int i=0;i<n;i++) hp[i].calcangle(); 730 sort(hp,hp+n); 731 unique(); 732 que[st=0]=0; 733 que[ed=1]=1; 734 p[1]=hp[0].crosspoint(hp[1]); 735 for(int i=2;i<n;i++){ 736 while(st<ed&&sgn((hp[i].e-hp[i].s)^(p[ed]-hp[i].s))<0) ed--; 737 while(st<ed&&sgn((hp[i].e-hp[i].s)^(p[st+1]-hp[i].s))<0) st++; 738 que[++ed]=i; 739 if(hp[i].parallel(hp[que[ed-1]])) return false; 740 p[ed]=hp[i].crosspoint(hp[que[ed-1]]); 741 } 742 while(st<ed&&sgn((hp[que[st]].e-hp[que[st]].s)^(p[ed]-hp[que[st]].s))<0) ed--; 743 while(st<ed&&sgn((hp[que[ed]].e-hp[que[ed]].s)^(p[st+1]-hp[que[ed]].s))<0) st++; 744 if(st+1>=ed) return false; 745 return true; 746 } 747 748 void getconvex(polygon &con){///得到最后半平面交得到的凸多边形,要先调用halfplaneinsert()且返回true 749 p[st]=hp[que[st]].crosspoint(hp[que[ed]]); 750 con.n=ed-st+1; 751 for(int j=st,i=0;j<=ed;i++,j++){ 752 con.p[i]=p[j]; 753 } 754 } 755 }; 756 757 struct circles{ 758 circle c[1010]; 759 double ans[1010];///ans[i]表示被覆盖了i次的面积 760 double pre[1010]; 761 int n; 762 circles(){} 763 void add(circle cc){ 764 c[n++]=cc; 765 } 766 767 bool inner(circle x,circle y){///x包含在y中 768 if(x.relationcircle(y)!=1) return 0; 769 return sgn(x.r-y.r)<=0?1:0; 770 } 771 772 void init_or(){///圆的面积并去掉内含的圆 773 bool mark[1010]={0}; 774 int i,j,k=0; 775 for(i=0;i<n;i++){ 776 for(j=0;j<n;j++){ 777 if(i!=j&&!mark[j]){ 778 if(c[i]==c[j]||inner(c[i],c[j])) break; 779 } 780 } 781 if(j<n) mark[i]=1; 782 } 783 for(i=0;i<n;i++){ 784 if(!mark[i]) c[k++]=c[i]; 785 } 786 n=k; 787 } 788 789 void init_add(){///圆的面积交去掉内含的圆 790 int i,j,k; 791 bool mark[1010]={0}; 792 for(i=0;i<n;i++){ 793 for(int j=0;j<n;j++){ 794 if(i!=j&&!mark[j]){ 795 if((c[i]==c[j])||inner(c[j],c[i])) break; 796 } 797 } 798 if(j<n) mark[i]=1; 799 } 800 for(i=0;i<n;i++){ 801 if(!mark[i]){ 802 c[k++]=c[i]; 803 } 804 } 805 n=k; 806 } 807 808 double areaarc(double th,double r){///半径为r的圆,弧度为th,对应的弓形的面积 809 return 0.5*r*r*(th-sin(th)); 810 } 811 812 813 void getarea(){ 814 memset(ans,0,sizeof(ans)); 815 vector<pair<double,int> >v; 816 for(int i=0;i<n;i++){ 817 v.clear(); 818 v.push_back(make_pair(-PI,1)); 819 v.push_back(make_pair(PI,-1)); 820 for(int j=0;j<n;j++){ 821 if(i!=j){ 822 Point q=(c[j].p-c[i].p); 823 double ab=q.len(),ac=c[i].r,bc=c[j].r; 824 if(sgn(ab+ac-bc)<=0){ 825 v.push_back(make_pair(-PI,1)); 826 v.push_back(make_pair(PI,-1)); 827 continue; 828 } 829 if(sgn(ab+bc-ac)<=0)continue; 830 if(sgn(ab-ac-bc)>0) continue; 831 double th=atan2(q.y,q.x),fai=acos((ac*ac+ab*ab-bc*bc)/(2.0*ac*ab)); 832 double a0=th-fai; 833 if(sgn(a0+PI)<0) a0+=2*PI; 834 double a1=th+fai; 835 if(sgn(a1-PI)>0) a1-=2*PI; 836 if(sgn(a0-a1)>0){ 837 v.push_back(make_pair(a0,1)); 838 v.push_back(make_pair(PI,-1)); 839 v.push_back(make_pair(-PI,1)); 840 v.push_back(make_pair(a1,-1)); 841 } 842 else{ 843 v.push_back(make_pair(a0,1)); 844 v.push_back(make_pair(a1,-1)); 845 } 846 } 847 sort(v.begin(),v.end()); 848 int cur=0; 849 for(int j=0;j<v.size();j++){ 850 if(cur&&sgn(v[j].first-pre[cur])){ 851 ans[cur]+=areaarc(v[j].first-pre[cur],c[i].r); 852 ans[cur]+=0.5*(Point(c[i].p.x+c[i].r*cos(pre[cur]),c[i].p.y+c[i].r*sin(pre[cur]))^Point(c[i].p.x+c[i].r*cos(v[j].first),c[i].p.y+c[i].r*sin(v[j].first))); 853 } 854 cur+=v[j].second; 855 pre[cur]=v[j].first; 856 } 857 } 858 } 859 for(int i=1;i<n;i++){ 860 ans[i]-=ans[i+1]; 861 } 862 } 863 }; 864 865 866 bool Check(Line a,Line b){ 867 if(sgn((a.s-a.e)^(b.s-a.e))*sgn((a.s-a.e)^(b.e-a.e))>0) return false; 868 if(sgn((b.s-b.e)^(a.s-b.e))*sgn((b.s-b.e)^(a.e-b.e))>0) return false; 869 if(sgn(max(a.s.x,a.e.x)-min(b.s.x,b.e.x))>=0&&sgn(max(b.s.x,b.e.x)-min(a.s.x,a.e.x))>=0 870 &&sgn(max(a.s.y,a.e.y)-min(b.s.y,b.e.y))>=0&&sgn(max(b.s.y,b.e.y)-min(a.s.y,a.e.y))>=0) 871 return true; 872 else return false; 873 } 874 875 Line L[2005]; 876 877 int main(){ 878 int t; 879 scanf("%d",&t); 880 Point p; 881 for(int Case=1;Case<=t;Case++){ 882 double r; 883 int n; 884 scanf("%lf %d",&r,&n); 885 polygon poly; 886 halfplane hp; 887 halfplanes hps; 888 hps.n=0; 889 hp.s.x=r,hp.s.y=-r,hp.e.x=r,hp.e.y=r,hps.push(hp); 890 hp.s.x=r,hp.s.y=r,hp.e.x=-r,hp.e.y=r,hps.push(hp); 891 hp.s.x=-r,hp.s.y=r,hp.e.x=-r,hp.e.y=-r,hps.push(hp); 892 hp.s.x=-r,hp.s.y=-r,hp.e.x=r,hp.e.y=-r,hps.push(hp); 893 for(int i=1;i<=n;i++){ 894 L[i].input(); 895 } 896 p.input(); 897 for(int i=1;i<=n;i++){ 898 if(cross(L[i].s,p,L[i].e)>=0){ 899 swap(L[i].s,L[i].e); 900 } 901 hp.s=L[i].s,hp.e=L[i].e; 902 hps.push(hp); 903 } 904 if(hps.halfplaneinsert()){ 905 hps.getconvex(poly); 906 } 907 circle c(0,0,r); 908 double ans1=c.area(); 909 double ans2=poly.areacircle(c); 910 printf("Case %d: %.5f%% ",Case,ans2*100/ans1); 911 } 912 return 0; 913 } 914 /* 915 916 5 1 917 -5 0 5 3 918 0 0 919 920 5 2 921 -5 0 5 3 922 -5 0 5 -3 923 0 0 924 925 5 2 926 -5 0 5 3 927 -5 0 5 -3 928 0 4.9 929 930 5 2 931 -5 0 5 3 932 -5 0 5 -3 933 0 -4.9 934 935 1.00 2 936 -1.00 0.00 1.00 0.00 937 0.00 -1.00 0.00 1.00 938 0.50 0.50 939 940 1.00 1 941 -1.00 0.00 1.00 0.00 942 0.50 0.50 943 944 */