zoukankan      html  css  js  c++  java
  • Finding Hotels

    Finding Hotels

    http://acm.hdu.edu.cn/showproblem.php?pid=5992

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
    Total Submission(s): 2180    Accepted Submission(s): 688


    Problem Description
    There are N hotels all over the world. Each hotel has a location and a price. M guests want to find a hotel with an acceptable price and a minimum distance from their locations. The distances are measured in Euclidean metric.
     
    Input
    The first line is the number of test cases. For each test case, the first line contains two integers N (N ≤ 200000) and M (M ≤ 20000). Each of the following N lines describes a hotel with 3 integers x (1 ≤ x ≤ N), y (1 ≤ y ≤ N) and c (1 ≤ c ≤ N), in which x and y are the coordinates of the hotel, c is its price. It is guaranteed that each of the N hotels has distinct x, distinct y, and distinct c. Then each of the following M lines describes the query of a guest with 3 integers x (1 ≤ x ≤ N), y (1 ≤ y ≤ N) and c (1 ≤ c ≤ N), in which x and y are the coordinates of the guest, c is the maximum acceptable price of the guest.
     
    Output
    For each guests query, output the hotel that the price is acceptable and is nearest to the guests location. If there are multiple hotels with acceptable prices and minimum distances, output the first one.
     
    Sample Input
    2
    3 3
    1 1 1
    3 2 3
    2 3 2
    2 2 1
    2 2 2
    2 2 3
    5 5
    1 4 4
    2 1 2
    4 5 3
    5 2 1
    3 3 5
    3 3 1
    3 3 2
    3 3 3
    3 3 4
    3 3 5
     
    Sample Output
    1 1 1
    2 3 2
    3 2 3
    5 2 1
    2 1 2
    2 1 2
    1 4 4
    3 3 5
     
    Source

    结构体内用友元函数这题会T....

    模板题

      1 #include<iostream>
      2 #include<queue>
      3 #include<cstring>
      4 #include<algorithm>
      5 #include<cstdio>
      6 #define N 200005
      7 using namespace std;
      8 
      9 int n,m,id;//n是点数,m是维度,id是当前切的维度
     10 
     11 struct sair{
     12     long long p[5];
     13     bool operator<(const sair &b)const{
     14         return p[id]<b.p[id];
     15     }
     16 }_data[N],data[N<<3],tt[N];
     17 int flag[N<<3];
     18 
     19 priority_queue<pair<long long,sair> >Q;
     20 
     21 void build(int l,int r,int rt,int dep){
     22     if(l>r) return;
     23     flag[rt]=1;
     24     flag[rt<<1]=flag[rt<<1|1]=-1;
     25     id=dep%m;
     26     int mid=l+r>>1;
     27     nth_element(_data+l,_data+mid,_data+r+1);
     28     data[rt]=_data[mid];
     29     build(l,mid-1,rt<<1,dep+1);
     30     build(mid+1,r,rt<<1|1,dep+1);
     31 }
     32 
     33 void query(sair p,int k,int rt,int dep){
     34     if(flag[rt]==-1) return;
     35     pair<long long,sair> cur(0,data[rt]);//获得当前节点
     36     for(int i=0;i<m;i++){//计算当前节点到P点的距离
     37         cur.first+=(cur.second.p[i]-p.p[i])*(cur.second.p[i]-p.p[i]);
     38     }
     39     int idx=dep%m;
     40     int fg=0;
     41     int x=rt<<1;
     42     int y=rt<<1|1;
     43     if(p.p[idx]>=data[rt].p[idx]) swap(x,y);
     44     if(~flag[x]) query(p,k,x,dep+1);
     45     //开始回溯
     46     if(Q.size()<k){
     47         if(cur.second.p[2]<=p.p[2]){
     48             Q.push(cur);
     49         }
     50         fg=1;
     51     }
     52     else{
     53         if(cur.first<=Q.top().first&&cur.second.p[2]<=p.p[2]){
     54             if(cur.first==Q.top().first){
     55                 if(cur.second.p[3]<Q.top().second.p[3]){
     56                     Q.pop();
     57                     Q.push(cur);
     58                 }
     59             }
     60             else{
     61                 Q.pop();
     62                 Q.push(cur);
     63             }
     64         }
     65         if(((p.p[idx]-data[rt].p[idx])*(p.p[idx]-data[rt].p[idx]))<Q.top().first){
     66             fg=1;
     67         }
     68     }
     69     if(~flag[y]&&fg){
     70         query(p,k,y,dep+1);
     71     }
     72 }
     73 
     74 sair ans;
     75 
     76 
     77 int main(){
     78     int T;
     79     scanf("%d",&T);
     80     int k;
     81     while(T--){
     82         scanf("%d %d",&n,&k);
     83         m=2;
     84         for(int i=1;i<=n;i++){
     85             scanf("%lld %lld %lld",&_data[i].p[0],&_data[i].p[1],&_data[i].p[2]);
     86             _data[i].p[3]=i;
     87         }
     88         build(1,n,1,0);
     89         sair tmp;
     90         for(int i=1;i<=k;i++){
     91             while(!Q.empty()){
     92                 Q.pop();
     93             }
     94             scanf("%lld %lld %lld",&tmp.p[0],&tmp.p[1],&tmp.p[2]);
     95             tmp.p[3]=0x3f3f3f3f;
     96             query(tmp,1,1,0);
     97             ans=Q.top().second;
     98             Q.pop();
     99             printf("%lld %lld %lld
    ",ans.p[0],ans.p[1],ans.p[2]);
    100         }
    101     }
    102 }
    View Code
  • 相关阅读:
    LeetCode 72. Edit Distance
    LeetCode 71. Simplify Path
    LeetCode 70. Climbing Stairs
    LeetCode 69. Sqrt(x)
    Ubuntu系统测评
    itchat 爬了爬自己的微信通讯录
    logistic回归模型
    多元线性回归模型
    可乐鸡翅制作难点
    梯度下降算法&线性回归算法
  • 原文地址:https://www.cnblogs.com/Fighting-sh/p/9876357.html
Copyright © 2011-2022 走看看