zoukankan      html  css  js  c++  java
  • AC 自动机

    // begin {AC auto machine}
    const int MAXN_NODE = 5e5 + 7;
    const int MAXN_CHAR = 128;
    int ch[MAXN_NODE][MAXN_CHAR], fail[MAXN_NODE], val[MAXN_NODE],
        last[MAXN_NODE], sz;
    
    inline int idx(char c) {return (int)c;}
    
    void insert(char *s, int v) {
      int u = 0, n = strlen(s);
      for(int i = 0; i < n; ++i) {
        int c = idx(s[i]);
        if(!ch[u][c]) {
          memset(ch[sz], 0, sizeof(ch[sz]));
          //val[sz] = 0;
          ch[u][c] = sz++;
        }
        u = ch[u][c];
      }
      val[u] = v;
    }
    
    
    std::queue<int>q;
    void get_fail() {
      fail[0] = 0;
      for(int c = 0; c < MAXN_CHAR; ++c) {
        int u = ch[0][c];
        if(u) {fail[u] = 0; q.push(u), last[u] = 0;}
      }
    
      // BFS
      while(!q.empty()) {
        int r = q.front(); q.pop();
        for(int c = 0; c < MAXN_CHAR; ++c) {
          int u = ch[r][c];
          if(!u) {ch[r][c] =  ch[fail[r]][c]; continue;}
          q.push(u);
          int v = fail[r];
          while(v && !ch[v][c]) v = fail[v];
          fail[u] = ch[v][c];
          last[u] = val[fail[u]] ? fail[u] : last[fail[u]];
        }
      }
    }
    
    void print(int j) {
      if(j) {
        //printf("%d:%d
    ",j,val[j]);
        print(last[j]);
        ans[val[j]] ++;
      }
    }
    
    void find(char *T) {
      int n = strlen(T), j = 0;
      for(int i = 0; i < n; ++i) {
        int c = idx(T[i]);
        j = ch[j][c];
        if(val[j])  print(j);
        else if(last[j]) print(last[j]);
      }
    }
    
    void init() {
      sz = 1;
      memset(ch[0], 0, sizeof(ch[0]));
      memset(val, 0, sizeof(val));
    }
    // end {AC auto machine}
    

    下面代码针对频繁调用 print 进行了优化,没有立即沿suffix link 更新,而是最后自底向根root更新统计值

    // begin {ac-automation}
    const int MAXN = 3e5 + 7;
    const int SIGMA_SIZE = 26;
    struct ac_automation {
      struct node {int next[SIGMA_SIZE], fail, val;};
    
      node nod[MAXN];
      int length, pos[MAXN], st[MAXN], top;
    
      inline void init() {
        length = top = 0; newNode();
      }
    
      inline int newNode() {
        node &p = nod[length];
        p.val = p.fail = 0;
        memset(p.next, 0, SIGMA_SIZE * 4);
        return length++;
      }
    
      inline int idx(char c) {return c - 'a';}
    
      void insert(char *s, int id) {
        int cur = 0, k ;
        for(; *s; ++s) {
          k = idx(s[0]);
          node &p = nod[cur];
          if(!p.next[k]) p.next[k] = newNode();
          cur = p.next[k];
        }
        pos[id] = cur;
      }
    
      std::queue<int>Q;
      void get_fail() {
        int cur = 0;
        for(register int i = 0; i < SIGMA_SIZE; ++i) {
          node &p = nod[cur];
          if(p.next[i]) Q.push(p.next[i]);
        }
        while(!Q.empty()) {
          cur = Q.front(); Q.pop();
          for(int i = 0; i < SIGMA_SIZE; ++i) {
            node &p = nod[cur];
            if(p.next[i]) {
              int &e = p.next[i], &j = p.fail;
              nod[e].fail = nod[j].next[i];
              Q.push(e);
              st[++top] = e;
            } else p.next[i] = nod[p.fail].next[i];
          }
        }
      }
    
      void find(char *s) {
        int now = 0;
        for(; *s; ++s) {
          int k = idx(s[0]);
          now = nod[now].next[k];
          nod[now].val ++;
        }
        int tmp = top, p;
        while(tmp) {
          p = st[tmp];
          nod[nod[p].fail].val += nod[p].val;
          tmp --;
        }
      }
    };
    
    // end {ac-automation}
    

    LightOJ 1427 Substring Frequency (II)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1427

    给出的模板串会有重复,记录每个串在 (Trie) 中的位置 pos , (Trie) 中节点统计有次数 (val) 输出即可

    #include <stdio.h>
    #include <cstring>
    #include <algorithm>
    #include <queue>
    
    // begin {ac-automation}
    const int MAXN = 3e5 + 7;
    const int SIGMA_SIZE = 26;
    struct ac_automation {
      struct node {int next[SIGMA_SIZE], fail, val;};
    
      node nod[MAXN];
      int length, pos[MAXN], st[MAXN], top;
    
      inline void init() {
        length = top = 0; newNode();
      }
    
      inline int newNode() {
        node &p = nod[length];
        p.val = p.fail = 0;
        memset(p.next, 0, sizeof(p.next));
        return length++;
      }
    
      inline int idx(char c) {return c - 'a';}
      void insert(char *s, int id) {
        int cur = 0, k ;
        for(; *s; ++s) {
          k = idx(s[0]);
          node &p = nod[cur];
          if(!p.next[k]) p.next[k] = newNode();
          cur = p.next[k];
        }
        pos[id] = cur;
      }
    
      std::queue<int>Q;
      void get_fail() {
        int cur = 0;
        for(register int i = 0; i < SIGMA_SIZE; ++i) {
          node &p = nod[cur];
          if(p.next[i]) Q.push(p.next[i]);
        }
        while(!Q.empty()) {
          cur = Q.front(); Q.pop();
          for(int i = 0; i < SIGMA_SIZE; ++i) {
            node &p = nod[cur];
            if(p.next[i]) {
              int &e = p.next[i], &j = p.fail;
              nod[e].fail = nod[j].next[i];
              Q.push(e);
              st[++top] = e;
            } else p.next[i] = nod[p.fail].next[i];
          }
        }
      }
    
      void find(char *s) {
        int now = 0;
        for(; *s; ++s) {
          int k = idx(s[0]);
          now = nod[now].next[k];
          nod[now].val ++;
        }
        int tmp = top, p;
        while(tmp) {
          p = st[tmp];
          nod[nod[p].fail].val += nod[p].val;
          tmp --;
        }
      }
    };
    
    // end {ac-automation}
    
    ac_automation ac;
    
    const int MAX_t = 1e6 + 7;
    char t[MAX_t], s[500 + 7];
    int main() {
      int T, n; scanf("%d", &T);
      for(int i = 0; i < T; ++i) {
        ac.init();
        scanf("%d", &n); getchar();
        gets(t);
        for(int j = 0; j < n; ++j) {
          gets(s); ac.insert(s, j + 1);
        }
        ac.get_fail();
        ac.find(t);
        printf("Case %d:
    ", i + 1);
        for(int j = 0; j < n; ++j)
          printf("%d
    ", ac.nod[ac.pos[j + 1]].val);
      }
      return 0;
    }
    

    HDU-2896 病毒侵袭

    #include <stdio.h>
    #include <cstring>
    #include <algorithm>
    #include <bitset>
    #include <queue>
    
    std::bitset<500+7>vis;
    // begin{Ac_Automation}
    const int max_node = 5e5 + 7;
    const int sigma_size = 128;
    
    int ch[max_node][sigma_size], val[max_node], sz;
    int fail[max_node], last[max_node];
    
    inline int idx(char c) {return (int)c;}
    
    void insert(char *s, int v = 1) {
      int u = 0, n = strlen(s);
      for(int i = 0; i < n; ++i) {
        int c = idx(s[i]);
        if(!ch[u][c]) {
          memset(ch[sz], 0, sizeof(ch[sz]));
          //val[sz] = 0;
          ch[u][c] = sz++;
        }
        u = ch[u][c];
      }
      val[u] = v;
    }
    
    
    std::queue<int>q;
    void get_fail() {
      fail[0] = 0;
      for(int c = 0; c < sigma_size; ++c) {
        int u = ch[0][c];
        if(u) {fail[u] = 0; q.push(u), last[u] = 0;}
      }
    
      // BFS
      while(!q.empty()) {
        int r = q.front(); q.pop();
        for(int c = 0; c < sigma_size; ++c) {
          int u = ch[r][c];
          if(!u) {ch[r][c] =  ch[fail[r]][c]; continue;}
          q.push(u);
          int v = fail[r];
          while(v && !ch[v][c]) v = fail[v];
          fail[u] = ch[v][c];
          last[u] = val[fail[u]] ? fail[u] : last[fail[u]];
        }
      }
    }
    
    void print(int j) {
      if(j) {
        //printf("%d:%d
    ",j,val[j]);
        print(last[j]);
        vis[val[j]] = true;;
      }
    }
    
    void find(char *T) {
      int n = strlen(T), j = 0;
      for(int i = 0; i < n; ++i) {
        int c = idx(T[i]);
        j = ch[j][c];
        if(val[j])  print(j);
        else if(last[j]) print(last[j]);
      }
    }
    
    void init() {
      sz = 1;
      memset(ch[0], 0, sizeof(ch[0]));
      memset(val, 0, sizeof(val));
    }
    
    // end{Ac_Automation}
    char s[10000007];
    void solve() {
      init();
      int n; scanf("%d", &n); getchar();
      for(int i = 0; i < n; i++) {gets(s); insert(s, i + 1);}
      get_fail();
      int ret  = 0; scanf("%d", &n); getchar();
      for(int i = 0; i < n; ++i) {
        gets(s);vis.reset();find(s);
        if(vis.any()) {
          printf("web %d:", i + 1); ret++;
          for(int j = 0; j < 500; ++j) {
            if(vis[j+1]) printf(" %d", j+1);
          }
          puts("");
        }
      }
      printf("total: %d
    ", ret);
    }
    
    int main() {solve();  return 0;}
    

    POJ - 2778 DNA Sequence

    #pragma comment(linker, "/STACK:36777216")
    //#pragma GCC optimize ("O2")
    #define LOCAL
    //#include "testlib.h"
    #include <functional>
    #include <algorithm>
    #include <iostream>
    #include <fstream>
    #include <sstream>
    #include <iomanip>
    #include <numeric>
    #include <cstring>
    #include <climits>
    #include <cassert>
    #include <complex>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <bitset>
    #include <queue>
    #include <stack>
    #include <cmath>
    #include <ctime>
    #include <list>
    #include <set>
    #include <map>
    
    //#include <tr1/unordered_set>
    //#include <tr1/unordered_map>
    //#include <array>
    
    using namespace std;
    
    #define REP(i, n) for (int i=0;i<n;++i)
    #define FOR(i, a, b) for (int i=a;i<b;++i)
    #define DWN(i, b, a) for (int i=b-1;i>=a;--i)
    #define REP_1(i, n) for (int i=1;i<=n;++i)
    #define FOR_1(i, a, b) for (int i=a;i<=b;++i)
    #define DWN_1(i, b, a) for (int i=b;i>=a;--i)
    #define REP_C(i, n) for (int n____=n,i=0;i<n____;++i)
    #define FOR_C(i, a, b) for (int b____=b,i=a;i<b____;++i)
    #define DWN_C(i, b, a) for (int a____=a,i=b-1;i>=a____;--i)
    #define REP_N(i, n) for (i=0;i<n;++i)
    #define FOR_N(i, a, b) for (i=a;i<b;++i)
    #define DWN_N(i, b, a) for (i=b-1;i>=a;--i)
    #define REP_1_C(i, n) for (int n____=n,i=1;i<=n____;++i)
    #define FOR_1_C(i, a, b) for (int b____=b,i=a;i<=b____;++i)
    #define DWN_1_C(i, b, a) for (int a____=a,i=b;i>=a____;--i)
    #define REP_1_N(i, n) for (i=1;i<=n;++i)
    #define FOR_1_N(i, a, b) for (i=a;i<=b;++i)
    #define DWN_1_N(i, b, a) for (i=b;i>=a;--i)
    #define REP_C_N(i, n) for (int n____=(i=0,n);i<n____;++i)
    #define FOR_C_N(i, a, b) for (int b____=(i=0,b);i<b____;++i)
    #define DWN_C_N(i, b, a) for (int a____=(i=b-1,a);i>=a____;--i)
    #define REP_1_C_N(i, n) for (int n____=(i=1,n);i<=n____;++i)
    #define FOR_1_C_N(i, a, b) for (int b____=(i=a,b);i<=b____;++i)
    #define DWN_1_C_N(i, b, a) for (int a____=(i=b,a);i>=a____;--i)
    
    #define ECH(it, A) for (__typeof((A).begin()) it=(A).begin(); it != (A).end(); ++it)
    #define rECH(it, A) for (__typeof((A).rbegin()) it=(A).rbegin(); it != (A).rend(); ++it)
    #define REP_S(i, str) for (char*i=str;*i;++i)
    #define REP_L(i, hd, suc) for (int i=hd;i;i=suc[i])
    #define REP_G(i, u) REP_L(i,hd[u],suc)
    #define REP_SS(x, s) for (int x=s;x;x=(x-1)&s)
    #define DO(n) for ( int ____n = n; ____n-->0; )
    #define REP_2(i, j, n, m) REP(i, n) REP(j, m)
    #define REP_2_1(i, j, n, m) REP_1(i, n) REP_1(j, m)
    #define REP_3(i, j, k, n, m, l) REP(i, n) REP(j, m) REP(k, l)
    #define REP_3_1(i, j, k, n, m, l) REP_1(i, n) REP_1(j, m) REP_1(k, l)
    #define REP_4(i, j, k, ii, n, m, l, nn) REP(i, n) REP(j, m) REP(k, l) REP(ii, nn)
    #define REP_4_1(i, j, k, ii, n, m, l, nn) REP_1(i, n) REP_1(j, m) REP_1(k, l) REP_1(ii, nn)
    
    #define ALL(A) A.begin(), A.end()
    #define LLA(A) A.rbegin(), A.rend()
    #define CPY(A, B) memcpy(A, B, sizeof(A))
    #define INS(A, P, B) A.insert(A.begin() + P, B)
    #define ERS(A, P) A.erase(A.begin() + P)
    #define LBD(A, x) (lower_bound(ALL(A), x) - A.begin())
    #define UBD(A, x) (upper_bound(ALL(A), x) - A.begin())
    #define CTN(T, x) (T.find(x) != T.end())
    #define SZ(A) int((A).size())
    #define PB push_back
    #define MP(A, B) make_pair(A, B)
    #define PTT pair<T, T>
    #define Ts *this
    #define rTs return Ts
    #define fi first
    #define se second
    #define re real()
    #define im imag()
    
    #define Rush for(int ____T=int(RD()); ____T--;)
    #define Display(A, n, m) {                      
    REP(i, n){                                  
    REP(j, m-1) cout << A[i][j] << " ";     
    cout << A[i][m-1] << endl;              
    }                                           
    }
    #define Display_1(A, n, m) {                    
    REP_1(i, n){                                
    REP_1(j, m-1) cout << A[i][j] << " ";   
    cout << A[i][m] << endl;                
    }                                           
    }
    
    typedef long long LL;
    //typedef long double DB;
    typedef double DB;
    typedef unsigned uint;
    typedef unsigned long long ULL;
    
    typedef vector<int> VI;
    typedef vector<char> VC;
    typedef vector<string> VS;
    typedef vector<LL> VL;
    typedef vector<DB> VF;
    typedef set<int> SI;
    typedef set<string> SS;
    typedef map<int, int> MII;
    typedef map<string, int> MSI;
    typedef pair<int, int> PII;
    typedef pair<LL, LL> PLL;
    typedef vector<PII> VII;
    typedef vector<VI> VVI;
    typedef vector<VII> VVII;
    
    template<class T> inline T& RD(T &);
    template<class T> inline void OT(const T &);
    //inline int RD(){int x; return RD(x);}
    inline LL RD() {LL x; return RD(x);}
    inline DB& RF(DB &);
    inline DB RF() {DB x; return RF(x);}
    inline char* RS(char *s);
    inline char& RC(char &c);
    inline char RC();
    inline char& RC(char &c) {scanf(" %c", &c); return c;}
    inline char RC() {char c; return RC(c);}
    //inline char& RC(char &c){c = getchar(); return c;}
    //inline char RC(){return getchar();}
    
    template<class T> inline T& RDD(T &);
    inline LL RDD() {LL x; return RDD(x);}
    
    template<class T0, class T1> inline T0& RD(T0 &x0, T1 &x1) {RD(x0), RD(x1); return x0;}
    template<class T0, class T1, class T2> inline T0& RD(T0 &x0, T1 &x1, T2 &x2) {RD(x0), RD(x1), RD(x2); return x0;}
    template<class T0, class T1, class T2, class T3> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3) {RD(x0), RD(x1), RD(x2), RD(x3); return x0;}
    template<class T0, class T1, class T2, class T3, class T4> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4) {RD(x0), RD(x1), RD(x2), RD(x3), RD(x4); return x0;}
    template<class T0, class T1, class T2, class T3, class T4, class T5> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5) {RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5); return x0;}
    template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6) {RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5), RD(x6); return x0;}
    template<class T0, class T1> inline void OT(const T0 &x0, const T1 &x1) {OT(x0), OT(x1);}
    template<class T0, class T1, class T2> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2) {OT(x0), OT(x1), OT(x2);}
    template<class T0, class T1, class T2, class T3> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3) {OT(x0), OT(x1), OT(x2), OT(x3);}
    template<class T0, class T1, class T2, class T3, class T4> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4) {OT(x0), OT(x1), OT(x2), OT(x3), OT(x4);}
    template<class T0, class T1, class T2, class T3, class T4, class T5> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5) {OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5);}
    template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5, const T6 &x6) {OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5), OT(x6);}
    inline char& RC(char &a, char &b) {RC(a), RC(b); return a;}
    inline char& RC(char &a, char &b, char &c) {RC(a), RC(b), RC(c); return a;}
    inline char& RC(char &a, char &b, char &c, char &d) {RC(a), RC(b), RC(c), RC(d); return a;}
    inline char& RC(char &a, char &b, char &c, char &d, char &e) {RC(a), RC(b), RC(c), RC(d), RC(e); return a;}
    inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f) {RC(a), RC(b), RC(c), RC(d), RC(e), RC(f); return a;}
    inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f, char &g) {RC(a), RC(b), RC(c), RC(d), RC(e), RC(f), RC(g); return a;}
    inline DB& RF(DB &a, DB &b) {RF(a), RF(b); return a;}
    inline DB& RF(DB &a, DB &b, DB &c) {RF(a), RF(b), RF(c); return a;}
    inline DB& RF(DB &a, DB &b, DB &c, DB &d) {RF(a), RF(b), RF(c), RF(d); return a;}
    inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e) {RF(a), RF(b), RF(c), RF(d), RF(e); return a;}
    inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f) {RF(a), RF(b), RF(c), RF(d), RF(e), RF(f); return a;}
    inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f, DB &g) {RF(a), RF(b), RF(c), RF(d), RF(e), RF(f), RF(g); return a;}
    inline void RS(char *s1, char *s2) {RS(s1), RS(s2);}
    inline void RS(char *s1, char *s2, char *s3) {RS(s1), RS(s2), RS(s3);}
    template<class T0, class T1>inline T0& RDD(T0&a, T1&b) {RDD(a), RDD(b); return a;}
    template<class T0, class T1, class T2>inline T1& RDD(T0&a, T1&b, T2&c) {RDD(a), RDD(b), RDD(c); return a;}
    
    template<class T> inline void RST(T &A) {memset(A, 0, sizeof(A));}
    template<class T> inline void FLC(T &A, int x) {memset(A, x, sizeof(A));}
    template<class T> inline void CLR(T &A) {A.clear();}
    
    template<class T0, class T1> inline void RST(T0 &A0, T1 &A1) {RST(A0), RST(A1);}
    template<class T0, class T1, class T2> inline void RST(T0 &A0, T1 &A1, T2 &A2) {RST(A0), RST(A1), RST(A2);}
    template<class T0, class T1, class T2, class T3> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3) {RST(A0), RST(A1), RST(A2), RST(A3);}
    template<class T0, class T1, class T2, class T3, class T4> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4) {RST(A0), RST(A1), RST(A2), RST(A3), RST(A4);}
    template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5) {RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5);}
    template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6) {RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5), RST(A6);}
    template<class T0, class T1> inline void FLC(T0 &A0, T1 &A1, int x) {FLC(A0, x), FLC(A1, x);}
    template<class T0, class T1, class T2> inline void FLC(T0 &A0, T1 &A1, T2 &A2, int x) {FLC(A0, x), FLC(A1, x), FLC(A2, x);}
    template<class T0, class T1, class T2, class T3> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, int x) {FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x);}
    template<class T0, class T1, class T2, class T3, class T4> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, int x) {FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x);}
    template<class T0, class T1, class T2, class T3, class T4, class T5> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, int x) {FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x);}
    template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6, int x) {FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x), FLC(A6, x);}
    template<class T> inline void CLR(priority_queue<T, vector<T>, less<T> > &Q) {while(!Q.empty()) Q.pop();}
    template<class T> inline void CLR(priority_queue<T, vector<T>, greater<T> > &Q) {while(!Q.empty()) Q.pop();}
    template<class T> inline void CLR(stack<T> &S) {while(!S.empty()) S.pop();}
    template<class T> inline void CLR(queue<T> &Q) {while(!Q.empty()) Q.pop();}
    
    template<class T0, class T1> inline void CLR(T0 &A0, T1 &A1) {CLR(A0), CLR(A1);}
    template<class T0, class T1, class T2> inline void CLR(T0 &A0, T1 &A1, T2 &A2) {CLR(A0), CLR(A1), CLR(A2);}
    template<class T0, class T1, class T2, class T3> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3) {CLR(A0), CLR(A1), CLR(A2), CLR(A3);}
    template<class T0, class T1, class T2, class T3, class T4> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4) {CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4);}
    template<class T0, class T1, class T2, class T3, class T4, class T5> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5) {CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5);}
    template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6) {CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5), CLR(A6);}
    template<class T> inline void CLR(T &A, int n) {REP(i, n) CLR(A[i]);}
    
    template<class T> inline bool EPT(T &a) {return a.empty();}
    template<class T> inline T& SRT(T &A) {sort(ALL(A)); return A;}
    template<class T, class C> inline T& SRT(T &A, C B) {sort(ALL(A), B); return A;}
    template<class T> inline T& RVS(T &A) {reverse(ALL(A)); return A;}
    template<class T> inline T& UNQQ(T &A) {A.resize(unique(ALL(A)) - A.begin()); return A;}
    template<class T> inline T& UNQ(T &A) {SRT(A); return UNQQ(A);}
    
    /** Constant List .. **/ //{
    
    const int MOD = 1e5;//int(1e9) + 7;
    //const int MOD = 19901013;
    const int INF = 0x3f3f3f3f;
    const LL INFF = 0x3f3f3f3f3f3f3f3fLL;
    const DB EPS = 1e-9;
    const DB OO = 1e20;
    const DB PI = acos(-1.0); //M_PI;
    
    const int dx[] = { -1, 0, 1, 0};
    const int dy[] = {0, 1, 0, -1};
    
    //}
    
    /** Add On .. **/ //{
    // <<= '0. Nichi Joo ., //{
    
    template<class T> inline bool checkMin(T &a, const T b) {return b < a ? a = b, 1 : 0;}
    template<class T> inline bool checkMax(T &a, const T b) {return a < b ? a = b, 1 : 0;}
    template <class T, class C> inline bool checkUpd(T& a, const T b, C c) {return c(b, a) ? a = b, 1 : 0;}
    template<class T> inline T min(T a, T b, T c) {return min(min(a, b), c);}
    template<class T> inline T max(T a, T b, T c) {return max(max(a, b), c);}
    template<class T> inline T min(T a, T b, T c, T d) {return min(min(a, b), min(c, d));}
    template<class T> inline T max(T a, T b, T c, T d) {return max(max(a, b), max(c, d));}
    template<class T> inline T min(T a, T b, T c, T d, T e) {return min(min(min(a, b), min(c, d)), e);}
    template<class T> inline T max(T a, T b, T c, T d, T e) {return max(max(max(a, b), max(c, d)), e);}
    template<class T> inline T sqr(T a) {return a * a;}
    template<class T> inline T cub(T a) {return a * a * a;}
    template<class T> inline T ceil(T x, T y) {return (x - 1) / y + 1;}
    template<class T> T abs(T x) {return x > 0 ? x : -x;}
    inline int sgn(DB x) {return x < -EPS ? -1 : x > EPS;}
    inline int sgn(DB x, DB y) {return sgn(x - y);}
    
    inline DB cos(DB a, DB b, DB c) {return (sqr(a) + sqr(b) - sqr(c)) / (2 * a * b);}
    inline DB cot(DB x) {return 1. / tan(x);};
    inline DB sec(DB x) {return 1. / cos(x);};
    inline DB csc(DB x) {return 1. / sin(x);};
    
    //}
    
    // <<= '2. Number Theory .,//{
    namespace NT {
    #define gcd __gcd
    inline LL lcm(LL a, LL b) {return a * b / gcd(a, b);}
    
    inline void INC(int &a, int b) {a += b; if(a >= MOD) a -= MOD;}
    inline int sum(int a, int b) {a += b; if(a >= MOD) a -= MOD; return a;}
    
    /* 模数两倍刚好超 int 时。
     inline int sum(uint a, int b){a += b; a %= MOD;if (a < 0) a += MOD; return a;}
     inline void INC(int &a, int b){a = sum(a, b);}
     */
    
    inline void DEC(int &a, int b) {a -= b; if(a < 0) a += MOD;}
    inline int dff(int a, int b) {a -= b; if(a < 0) a  += MOD; return a;}
    inline void MUL(int &a, int b) {a = (LL)a * b % MOD;}
    //inline int pdt(int a, int b){return (LL)a * b % MOD;}
    inline int pdt(int x, int y) {
      int ret; __asm__ __volatile__("	mull %%ebx
    	divl %%ecx
    ":"=d"(ret):"a"(x), "b"(y), "c"(MOD));
      return ret;
    }
    
    
    inline int gcd(int m, int n, int &x, int &y) {
    
      x = 1, y = 0; int xx = 0, yy = 1, q;
    
      while(1) {
        q = m / n, m %= n;
        if(!m) {x = xx, y = yy; return n;}
        DEC(x, pdt(q, xx)), DEC(y, pdt(q, yy));
        q = n / m, n %= m;
        if(!n) return m;
        DEC(xx, pdt(q, x)), DEC(yy, pdt(q, y));
      }
    }
    
    inline int sum(int a, int b, int c) {return sum(a, sum(b, c));}
    inline int sum(int a, int b, int c, int d) {return sum(sum(a, b), sum(c, d));}
    inline int pdt(int a, int b, int c) {return pdt(a, pdt(b, c));}
    inline int pdt(int a, int b, int c, int d) {return pdt(pdt(a, b), pdt(c, d));}
    
    inline int pow(int a, LL b) {
      int c(1);
      while(b) {
        if(b & 1) MUL(c, a);
        MUL(a, a), b >>= 1;
      }
      return c;
    }
    
    template<class T> inline T pow(T a, LL b) {
      T c(1);
      while(b) {
        if(b & 1) c *= a;
        a *= a, b >>= 1;
      }
      return c;
    }
    
    template<class T> inline T pow(T a, int b) {
      return pow(a, (LL)b);
    }
    
    inline int _I(int b) {
      int a = MOD, x1 = 0, x2 = 1, q;
      while(1) {
        q = a / b, a %= b;
        if(!a) return x2;
        DEC(x1, pdt(q, x2));
    
        q = b / a, b %= a;
        if(!b) return x1;
        DEC(x2, pdt(q, x1));
      }
    }
    
    inline void DIV(int &a, int b) {MUL(a, _I(b));}
    inline int qtt(int a, int b) {return pdt(a, _I(b));}
    
    struct Int {
      int val;
    
      operator int() const {return val;}
    
      Int(int _val = 0): val(_val) {
        val %= MOD;
        if(val < 0) val += MOD;
      }
      Int(LL _val): val(_val) {
        _val %= MOD;
        if(_val < 0) _val += MOD;
        val = _val;
      }
    
      Int& operator +=(const int& rhs) {INC(val, rhs); rTs;}
      Int operator +(const int& rhs) const {return sum(val, rhs);}
      Int& operator -=(const int& rhs) {DEC(val, rhs); rTs;}
      Int operator -(const int& rhs) const {return dff(val, rhs);}
      Int& operator *=(const int& rhs) {MUL(val, rhs); rTs;}
      Int operator *(const int& rhs) const {return pdt(val, rhs);}
      Int& operator /=(const int& rhs) {DIV(val, rhs); rTs;}
      Int operator /(const int& rhs) const {return qtt(val, rhs);}
      Int operator-()const {return MOD - *this;}
    };
    
    } using namespace NT;//}
    
    // <<= '7 Matrix Theory ..//
    namespace MT {
    const int N = 100;
    int n = 0;
    typedef int rec ;
    
    struct matrix {
      rec d[N][N];
      void init(rec e = 0) {RST(d); if(e)REP(i, n) d[i][i] = e;}
      matrix(rec e = 0) {init(e);}
    
      matrix operator * (const matrix &rhs)const {
        matrix res; // REP(i,j,k,n,n,n) res.d[i][j] += d[i][k]*rhs.d[k][j];
        REP_2(i, j, n, n) {
          LL tmp = 0; REP(k, n) tmp += (LL)d[i][k] * rhs.d[k][j];;
          res.d[i][j] = tmp % MOD;
        }
        return res;
      }
    
      matrix operator *= (const matrix &rhs) {
        (*this) = (*this) * rhs;
      }
    
      inline int res() {
        int res = 0;
        REP(i, n) INC(res, d[0][i]);
        return res;
      }
    
      inline matrix pow_sum(const matrix &a, ULL nn) {
        matrix t; REP_2(i, j, n, n) t.d[i][j] = t.d[i][j + n] = a.d[i][j];
        FOR_C(i, n, n * 2) t.d[i][i] = 1; n <<= 1; t = pow(t, (LL)nn), n >>= 1;
        REP_2(i, j, n, n) t.d[i][j] = t.d[i][j + n];
        return t;
      }
      template<class T> T pow_sum(T a, ULL nn) {
        int _n = n; n = 1; matrix t; t.d[0][0] = a;
        t = pow_sum(t, nn), n = _n;
        return t.d[0][0];
      }
    };
    };
    
    /** I/O Accelerator Interface .. **/ //{
    #define g (c=getchar())
    #define d isdigit(g)
    #define p x=x*10+c-'0'
    #define n x=x*10+'0'-c
    #define pp l/=10,p
    #define nn l/=10,n
    template<class T> inline T& RD(T &x) {
      char c;
      while(!d); x = c - '0';
      while(d)p;
      return x;
    }
    template<class T> inline T& RDD(T &x) {
      char c;
      while(g, c != '-' && !isdigit(c));
      if(c == '-') {x = '0' - g; while(d)n;}
      else {x = c - '0'; while(d)p;}
      return x;
    }
    inline DB& RF(DB &x) {
      //scanf("%lf", &x);
      char c;
      while(g, c != '-' && c != '.' && !isdigit(c));
      if(c == '-')if(g == '.') {x = 0; DB l = 1; while(d)nn; x *= l;}
        else {x = '0' - c; while(d)n; if(c == '.') {DB l = 1; while(d)nn; x *= l;}}
      else if(c == '.') {x = 0; DB l = 1; while(d)pp; x *= l;}
      else {x = c - '0'; while(d)p; if(c == '.') {DB l = 1; while(d)pp; x *= l;}}
      return x;
    }
    #undef nn
    #undef pp
    #undef n
    #undef p
    #undef d
    #undef g
    inline char* RS(char *s) {
      //gets(s);
      scanf("%s", s);
      return s;
    }
    
    LL last_ans; int Case; template<class T> inline void OT(const T &x) {
      //printf("Case #%d: ", ++Case);
      //printf("%lld
    ", x);
      //printf("%.9f
    ", x);
      printf("%d
    ", x);
      //cout << x << endl;
      //last_ans = x;
    }
    //}/* .................................................................................................................................. */
    
    namespace ACM { // Aho-Corasick Automaton
    const int L = 11, N = 10 * L, Z = 4;
    int trans[N][Z], fail[N], cnt[N], Q[N], u, cz, op, tot;
    char str[L]; int ord[128], n;
    
    inline int new_node() {
      RST(trans[tot]), fail[tot]  = cnt[tot] = 0;
      return tot++;
    }
    #define v trans[u][c]
    #define f trans[fail[u]][c]
    inline void Build() {
      cz = op = u = 0; REP(c, Z) if(v) Q[op++] = v;
      while(cz < op) {
        u = Q[cz++]; REP(c, Z)
        if(v) fail[Q[op++] = v] = f, cnt[v] |= cnt[f];
        else v = f;
      }
    }
    #define c ord[*cur]
    inline void Insert() {
      RS(str), u = 0; REP_S(cur, str) {
        if(cnt[v]) return ;
        if(!v) v = new_node();
        u = v;
      }
      cnt[u] = 1;
    }
    #undef c
    #define u Q[i]
    #define H fail
    int Run() {
      op = 0; REP(i, tot) if(!cnt[i]) H[i] = op, Q[op++] = i; MT::n = tot;
      static MT::matrix A; A.init();
      REP_2(i, c, op, Z) if(!cnt[v]) ++A.d[H[u]][H[v]];
      return pow(A, n).res();
    }
    void Init() {
      int m; RD(m, n), tot = 0, new_node();
      DO(m) Insert(); Build();
    }
    } using namespace ACM;
    
    int main() {
      ord['A'] = 0, ord['T'] = 1, ord['G'] = 2, ord['C'] = 3;
      Init(), OT(Run());
      return 0;
    }
    

    上面是岛娘的代码,真心快呀,改天好好学习下

  • 相关阅读:
    python_3 装饰器之初次见面
    python_迭代器
    Python_1生成器(下)之单线并行--生产着消费者模型
    Python_ 1生成器(上)初识生成器
    memcache 和 redis 的区别
    Linux 面试总结
    网络面试总结
    操作系统相关面试总结
    剑指offer 数组中的重复数字
    svn-主副分支使用
  • 原文地址:https://www.cnblogs.com/Forgenvueory/p/7363515.html
Copyright © 2011-2022 走看看