题目大意:给出n
扇门,m
把钥匙,和没把钥匙可以改变状态(关->开,开->关》)的门的数量及对应编号(保证每个门被两把钥匙控制),现给出n
扇门的初始状态(1表示开,0表示关),问是否可以通过这m
把钥匙(可用可不用,不一定用完)使得所有的门都开启。
题解:终于看到了2-sat
的能想出来的题了,2-sat
本质是满族解的判断,这题显然可以用2-sat
来求解,求解的一般套路是将每个点拆为两个点,分别表示取或者不取(即一件事的正反两面),最后通过2-sat
算法,判断是否可行。这题需要一个转化,即我们对m
拆点,表示用或者不用这把钥匙改变对应的门。那么如何连边?可以这样想:对于一个门 的初始状态,如果是开,那么两把钥匙要么都用,要么都不用;如果是关,一定是用一把弃一把。那么就是说连边是要用门的初始状态确定的,那么这题也就解决了。
#pragma comment(linker, "/STACK: 1024000000,1024000000")
#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define eb emplace_back
#define em emplace
#define pii pair<int,int>
#define de(x) cout << #x << " = " << x << endl
#define clr(a,b) memset(a,b,sizeof(a))
#define INF (0x3f3f3f3f)
#define LINF ((long long)(0x3f3f3f3f3f3f3f3f))
#define F first
#define S second
using namespace std;
inline int getint()
{
int _x=0; char _tc=getchar();
while(_tc<'0'||_tc>'9') _tc=getchar();
while(_tc>='0'&&_tc<='9') _x*=10,_x+=(_tc-'0'),_tc=getchar();
return _x;
}
const int N = 1e5 + 15;
int n, m;
int dor[N];
vector<int> key[N];
struct TwoSet
{
static const int MAXV = 100100;
int V, n, tp, S[MAXV<<1];
vector<int> g[MAXV<<1];
bool vis[MAXV<<1];
void init( int tt )
{
n = tt;
V = (tt<<1) + 1;
for ( int i = 1; i <= V; i ++ )
g[i].clear(), vis[i] = false;
}
void addEdge( int x, int y )
{
g[x].pb(y);
g[y].pb(x);
}
bool dfs( int x )
{
if ( vis[ x > n ? x - n : x + n ] ) return false;
if ( vis[x] ) return true;
vis[ S[++tp] = x ] = 1;
for ( int v : g[x] )
if ( !dfs(v) ) return false;
return true;
}
bool solve()
{
for ( int i = 1; i <= n; i ++ )
if ( !vis[i] && !vis[i+n] )
{
tp = 0;
if ( !dfs(i) )
{
while ( tp ) vis[S[tp--]] = false;
if ( !dfs(i+n) ) return false;
}
}
return true;
}
}TwoSet;
int main()
{
scanf("%d%d", &n, &m);
for ( int i = 1; i <= n; i ++ )
scanf("%d", &dor[i]);
for ( int i = 1, x; i <= m; i ++ )
{
scanf("%d", &x);
for ( int j = 0, y; j < x; j ++ )
scanf("%d", &y), key[y].pb(i);
}
TwoSet.init(m);
for ( int i = 1, x, y; i <= n; i ++ )
{
x = key[i][0], y = key[i][1];
if ( !dor[i] )
{
TwoSet.addEdge(x,y+m);
TwoSet.addEdge(x+m,y);
}
else
{
TwoSet.addEdge(x,y);
TwoSet.addEdge(x+m,y+m);
}
}
if ( TwoSet.solve() ) puts("YES");
else puts("NO");
return 0;
}