zoukankan      html  css  js  c++  java
  • python 基础部分重点复习整理--从意识那天开始进阶--已结

    pythonic 风格编码

    入门python好博客
    进阶大纲
    有趣的灵魂
    老齐的教程
    老齐还整理了很多精华
    听说 fluent python + pro python 这两本书还不错!

    元组三种遍历,有点像字有四种写法一样。。。苦笑

    for index in range(0,len(tuple_1)):
    ...     print(tuple_1[index])
    
    >>> for index in range(0,len(tuple_1)):
    ...     print('{}--{}'.format(index,tuple_1[index]))
    
    
    >>> tuple_1 = (1,2,'hello','world')
    >>> for content in tuple_1:
    ...     print(content)
    
    >>> for index,enum in enumerate(tuple_1):
    ...     print('{}--{}'.format(index,enum))
    
    # 黑魔法咩?  map ,reduce
    from functools import reduce
    def str2int(s):
        Digital = {'0':0,'1':1,'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':8,'9':9}
        return Digital[s]
    
    def str_reduce(s):
        l = list(map(str2int,s))
        if not isinstance(s, str):
            raise ValueError('输入不是字符串类型!')
        return reduce(lambda x,y:x+y,[v * 10**(len(l)-i-1) for  i , v in enumerate(l)])
    
    str_reduce('213')
    
    # 更加 逆天的 map 用法,不论传入的 list 是普通值 还是 func 都行
    
    >>> for i in range(10):
    ...     print(list(map(lambda x:x(i),[lambda x:x+x,lambda x:x**2])))
    
    
    # filter 用法
    >>> list_1 = [i for i in range(30) if i%2 == 1]
    >>> list_1
    [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29]
    >>> list(filter(lambda x:x<10,list_1))
    [1, 3, 5, 7, 9]
    
    
    
    tuple 互转   tuple(list_1)    ,  list(tuple_2)
    >>> import os
    >>> print(os.path.abspath('.'))
    C:UsersFrankLiDesktop
    >>> import sys
    >>> print(sys.argv)
    ['']
    >>> print(sys.executable)
    D:Program Files (x86)pythonpython.exe
    
    • 列表生成式 vs 生成器表达式
    >>> [x for x in list_1 if x%2==1]
    [1, 3, 5]
    
    >>> (x for x in list_1 if x%2==1)
    <generator object <genexpr> at 0x033C2660>
    
    >>> gen = (x for x in range(0,10) if x%3==1)
    >>> for x in gen:
    ...     print(x)
    ...
    1
    4
    7
    
    
    >>> #这是一个生成器应用,斐波拉契数列
    ... def fib(max):
    ...     n,a,b=0,1,1
    ...     while n<=max:
    ...         yield b
    ...         a,b=b,a+b
    ...         n=n+1
    ...     return 'Nore More!'
    ...
    >>> for f in fib(6):
    ...     print('fib: {}'.format(f))
    ...
    fib: 1
    fib: 2
    fib: 3
    fib: 5
    fib: 8
    fib: 13
    fib: 21
    
    >>> def fib(x):
    ...     a,b = 1,1
    ...     for i in range(x):
    ...         yield a
    ...         a,b = b,a+b
    ...
    >>> for i in fib(10):
    ...     print(i)
    ...
    1
    1
    2
    3
    5
    8
    13
    21
    34
    55
    
    #获取生成器重的 return 返回值 Nore More!
    
    >>> g = fib(6)
    >>> while True:
    ...    try:
    ...        x=next(g)
    ...        print('g: {}'.format(x))
    ...    except StopIteration as e:
    ...        print('evalue: {}'.format(e.value))
    ...        break
    ...
    g: 1
    g: 2
    g: 3
    g: 5
    g: 8
    g: 13
    g: 21
    evalue: Nore More!
    
    # string 也是序列可以被迭代 iter(s) 即可
    >>> s = 'google'
    >>> s_iter = iter(s)
    >>> while True:
    ...     try:
    ...         print(next(s_iter))
    ...     except StopIteration as stopIter:
    ...         print('done')
    ...         break
    ...
    g
    o
    o
    g
    l
    e
    done
    
    
    >>> # 杨辉三角末尾补零两数相加大法
    ... def triangle():
    ...     l=[1]
    ...     while True:
    ...         yield l
    ...         l.append(0)
    ...         l=[l[i-1]+l[i] for i in range(0,len(l))]
    
    
    调用杨辉三角生成器
    >>> n=0
    >>> for e in triangle():
    ...     n=n+1
    ...     print(e,'	')
    ...     if n==10:
    ...         break
    ...
    [1]
    [1, 1]
    [1, 2, 1]
    [1, 3, 3, 1]
    [1, 4, 6, 4, 1]
    [1, 5, 10, 10, 5, 1]
    [1, 6, 15, 20, 15, 6, 1]
    [1, 7, 21, 35, 35, 21, 7, 1]
    [1, 8, 28, 56, 70, 56, 28, 8, 1]
    [1, 9, 36, 84, 126, 126, 84, 36, 9, 1]
    
    

    迭代器

    Generator 天然的 迭代器 
    而  tuple , list 等 序列如果要编程 迭代器 需要 iter(list_1) 、iter(tuple_2)
    >>> from collections import Iterator
    >>> isinstance((1,2,3,4),Iterator)
    False
    >>> isinstance((x for x in range(10) if x%2==0),Iterator)
    True
    >>>
    >>> isinstance(iter((1,2,3,4)),Iterator)
    True
    >>>
    
    >>> list_1 = [1,2,3,4]
    >>> list_1_iter = iter(list_1)
    >>> while True:
    ...     try:
    ...         x=next(list_1_iter)
    ...         print('x:{}'.format(x))
    ...     except StopIteration as e:
    ...         print('e.value: {}'.format(e.value))
    ...         break
    ...
    x:1
    x:2
    x:3
    x:4
    e.value: None
    
    
    • python map reduce 实现
    >>> def pow2(val):
    ...     return val**2
    ...
    >>> list_1 = [1,2,3,4,5]
    >>> list(map(pow2,list_1))
    [1, 4, 9, 16, 25]
    >>> def sum(x,y):
    ...     return x+y
    ...
    >>> from functools import reduce
    >>> reduce(sum,list(map(pow2,list_1)))
    55
    
    强悍的 lambda
    
    >>> from functools import reduce
    >>> reduce(lambda x,y:x+y,list(map(lambda x:x**2,[1,2,3,4,5,6,7])))
    
    • 注意区别 Iterable 可迭代 与 Iterator 惰性迭代器

    高阶函数

    >>> def lazy_sum(*args):
    ...     def sum():
    ...         ax=0
    ...         for n in args:
    ...          ax=ax+n
    ...         return ax
    ...     return sum
    ...
    >>> lazy_sum(1,2,3,4,5)
    <function lazy_sum.<locals>.sum at 0x013902B8>
    >>> f=lazy_sum(1,2,3,4,5)
    >>> f()
    15
    

    win 下 python 清屏

    >>> import os
    >>> def clear():
    ...     os.system('cls')
    
    
    >>> import os
    >>> def cls():
    ...     if os.name.upper() == 'NT':
    ...         os.system('cls')
    ...     else:
    ...         os.system('clear')
    
    

    可变参数,巧调用

    python的可变参数和关键字参数(*args **kw)

    讲*args 可变参数, **kw 关键字参数非常好的文章

    >>> def test(*args):
    ...     sum=0
    ...     for n in args:
    ...         sum=sum+n
    ...     return sum
    ... test([1,2,3,4])
      File "<stdin>", line 6
        test([1,2,3,4])
           ^
    SyntaxError: invalid syntax
    >>> test(*[1,2,3,4])
    10
    >>> test(1,2,3,4)
    10
    
    
    在 python3 中已经废除了 dict 的 has_key 方法 用  key in dict 这种方式代替
    
    >>> def person(*args,**kw):
    ...     l=[]
    ...     for n in args:
    ...         l.append(n)
    ...     dic=kw
    ...     if 'city' in dic:
    ...         pass
    ...     if 'job' in dic:
    ...         pass
    ...     print('l:{} dic {}'.format(l,dic))
    ...
    >>> person('tom',2,city='changsha',job='unknown')
    l:['tom', 2] dic {'city': 'changsha', 'job': 'unknown'}
    
    进阶
    >>> extra = {'city':'cs','job':'developer'}
    >>> tuple=('tom',30)
    >>> person(*tuple,**extra)
    l:['tom', 30] dic {'city': 'cs', 'job': 'developer'}
    >>>
    

    装饰器类似于 java 里的 AOP 动态代理,或者继承组合

    >>> import functools
    >>> #自定义文本消息的事务装饰器
    ... def trans(text):
    ...     def decorater(func):
    ...         @functools.wraps(func)
    ...         def wrapper(*args,**kw):
    ...             print('{} {}'.format(text,func.__name__))
    ...             return func(*args,**kw)
    ...         return wrapper
    ...     return decorater
    ...
    >>> @trans('开启事务'):
      File "<stdin>", line 1
        @trans('开启事务'):
                      ^
    SyntaxError: invalid syntax
    >>> @trans('开启事务')
    ... def trans_func():
    ...     print('我是一个要被事务装饰的函数')
    ...
    >>> trans_func()
    开启事务 trans_func
    我是一个要被事务装饰的函数
    
    >>> from functools import wraps
    >>> def my_decorator(func):
    ...     @wraps(func)
    ...     def wrap_func():
    ...         print('before...')
    ...         func()
    ...         print('after...')
    ...     return wrap_func
    ...
    >>> @my_decorator
    ... def func_a():
    ...     print('func_a...')
    ...
    >>> func_a()
    before...
    func_a...
    after...
    >>> func_a.__name__
    'func_a'
    
    
    >>> from functools import wraps
    >>> def custom_text(text):
    ...     def decorater(func):
    ...         @wraps(func)
    ...         def wrap_decorated(*args,**kwargs):
    ...             print('{} {}'.format(text,func.__name__))
    ...             return func(*args,**kwargs)
    ...         return wrap_decorated
    ...     return decorater
    ...
    >>> @custom_text('自定义文本信息...')
    ... def tran(*args,**kwargs):
    ...     for i in args:
    ...         print(i,end=',')
    ...     for key,value in kwargs.items():
    ...         print('{}-->{}'.format(key,value))
    ...     print('事务...社会...')
    ...
    >>> args = (1,'abc',3)
    >>> from functools import wraps
    >>> kwargs = dict(name='Frank',age=18)
    >>> tran(*args,**kwargs)
    自定义文本信息... tran
    1,abc,3,name-->Frank
    age-->18
    事务...社会...
    
    
    from functools import wraps
    
    class LogIt(object):
        def __init__(self,log_file='out.log'):
            self._log_file = log_file
            
        @property
        def log_file(self):
            return self._log_file
        @log_file.setter
        def log_file(self,log_file):
            self._log_file = log_file
        def __call__(self,func):
            @wraps(func)
            def wrap_func(*args,**kwargs):
                log_string = '{} {}'.format(func.__name__,'called...')
                print('wrap_func logging...{}'+log_string)
                with open(self.log_file,'a') as logfile:
                    logfile.write(log_string+'
    ')
                self.notify(log_string)
                return func(*args,**kwargs)
            return wrap_func
        def notify(self,log_string):
            print('notify logging...{}'.format(log_string))
    
    @LogIt('out1.log')
    def trans(*args,**kwargs):
        for i in args:
            print(i,end=',')
        for key,value in kwargs.items():
            pritn('{}<-->{}'.format(key,value))
            
    args = ('trans start..',1,2,'test')
    kwargs = dict(name='Frank',age=18)
    trans(*args,*kwargs)
    
    wrap_func logging...{}trans called...
    notify logging...trans called...
    trans start..,1,2,test,name,age,
    
    

    偏函数,可以见 functools 多么强大值得好好学学

    >>> convert_int_from_8 = functools.partial(int,base=8)
    >>> convert_int_from_8(12345)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    TypeError: int() can't convert non-string with explicit base
    >>> convert_int_from_8('12345')
    5349
    
    # kw 这种 dict 传值也是可以的
    >>> kw = {'base':8}
    >>> convert_int_from_8 = functools.partial(int,base)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    NameError: name 'base' is not defined
    >>> convert_int_from_8 = functools.partial(int,**kw)
    >>> convert_int_from_8('123456')
    
    最后,创建偏函数时,实际上可以接收函数对象、*args和**kw这3个参数,当传入:
    
    int2 = functools.partial(int, base=2)
    实际上固定了int()函数的关键字参数base,也就是:
    
    int2('10010')
    相当于:
    
    kw = { 'base': 2 }
    int('10010', **kw)
    当传入:
    
    max2 = functools.partial(max, 10)
    实际上会把10作为*args的一部分自动加到左边,也就是:
    
    max2(5, 6, 7)
    相当于:
    
    args = (10, 5, 6, 7)
    max(*args)
    结果为10。
    
    # 总结 就是 偏函数 其实就是把原本参数很多的函数简化参数,便于使用
    #当函数的参数个数太多,需要简化时,使用functools.partial可以创建一个新的函数,这个新函数可以固定住原函数的部分参数,从而在调用时更简单
    

    模块

    # -*- coding: utf-8 -*-
    'test module'
    __author__ = 'Frank Li'
    import sys
    def test():
        args=sys.argv
        if len(args)==1:
            print('hello world!')
        elif len(args)==2:
            print('hello {}'.format(args[1]))
        else:
            print('to many args!')
    
    if __name__ == '__main__':
        test()
    

    模块搜索路径

    默认情况下,Python解释器会搜索当前目录、所有已安装的内置模块和第三方模块,搜索路径存放在sys模块的path变量中:
    
    >>> import sys
    >>> sys.path
    ['', '/Library/Frameworks/Python.framework/Versions/3.6/lib/python36.zip', '/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6', ..., '/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages']
    如果我们要添加自己的搜索目录,有两种方法:
    
    一是直接修改sys.path,添加要搜索的目录:
    
    >>> import sys
    >>> sys.path.append('/Users/michael/my_py_scripts')
    这种方法是在运行时修改,运行结束后失效。
    
    第二种方法是设置环境变量PYTHONPATH,该环境变量的内容会被自动添加到模块搜索路径中。设置方式与设置Path环境变量类似。注意只需要添加你自己的搜索路径,Python自己本身的搜索路径不受影响。
    

    面向对象

    >>> class Test(object):
    ...     def __init__(self,*args):
    ...         self.name,self.age=args[0],args[1]
    ...
    >>> t = Test('frank',18)
    >>> t
    <__main__.Test object at 0x02F00AB0>
    >>> t.name
    'frank'
    >>> t.age
    18
    

    再进一阶

    >>> class Person(object):
    ...     def __init__(self,name,age,*args,**kw):
    ...         self.name,self.age = name,age
    ...         for arg in args:
    ...             print('arg: {}'.format(arg))
    ...         for key in kw:
    ...             print('key: {}--> value: {}'.format(key,kw[key]))
    ...
    >>> args=('a',1,2,'b')
    >>> kw ={'city':'changsha','job':'developer'}
    >>> Person('frank',18,*args,**kw)
    arg: a
    arg: 1
    arg: 2
    arg: b
    key: city--> value: changsha
    key: job--> value: developer
    <__main__.Person object at 0x02F00DD0>
    
    
    
    >>> class Student(object):
    ...     def __init__(self,name,score,*args,**kw):
    ...         self.name,self.score = name,score
    ...         for arg in args:
    ...             print('arg: {}'.format(arg))
    ...         for key in kw:
    ...             if key=='city':
    ...                 self.city =kw[key]
    ...             elif key=='job':
    ...                 self.job=kw[key]
    ...             else:
    ...                 pring('key: {} --> value: {}'.format(key,kw[key]))
    ...     def get_grade(self):
    ...             if  self.score >= 90:
    ...                 return '优'
    ...             if 70<self.score<90:
    ...                 return '良'
    ...             elif 60<self.score<=70:
    ...                 return '几个'
    ...             else:
    ...                 return '不及格'
    
    >>> student = Student('frank',80,*args,**kw)
    arg: a
    arg: 1
    arg: 2
    arg: 3
    arg: c
    arg: d
    >>> student.city
    'changsha'
    >>> student.get_grade()
    '良'
    >>>
    
    区别于 java 这种静态语言 , python 是动态语言
    小结
    类是创建实例的模板,而实例则是一个一个具体的对象,各个实例拥有的数据都互相独立,互不影响;
    
    方法就是与实例绑定的函数,和普通函数不同,方法可以直接访问实例的数据;
    
    通过在实例上调用方法,我们就直接操作了对象内部的数据,但无需知道方法内部的实现细节。
    
    和静态语言不同,Python允许对实例变量绑定任何数据,也就是说,对于两个实例变量,虽然它们都是同一个类的不同实例,但拥有的变量名称都可能不同:
    
    >>> bart = Student('Bart Simpson', 59)
    >>> lisa = Student('Lisa Simpson', 87)
    >>> bart.age = 8
    >>> bart.age
    8
    >>> lisa.age
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    AttributeError: 'Student' object has no attribute 'age'
    

    访问权限控制

    此方法不推荐, 应该用 set_gender() 而不是 bart._Student__gender 这种方式修改 gender 属性
    >>> class Student(object):
    ...     def __init__(self,name,gender):
    ...         self.name=name
    ...         self.__gender=gender
    ...     def get_gender(self):
    ...         return self.__gender
    ...
    >>> bart = Student('Bart', 'male')
    >>> if bart.get_gender() != 'male':
    ...     print('测试失败!')
    ... else:
    ...     bart._Student__gender='female'
    ...     if bart.get_gender() != 'female':
    ...         print('测试失败!')
    ...     else:
    ...         print('测试成功!')
    ...
    测试成功!
    
    
    正确做法:
    
    >>> class Student(object):
    ...     def __init__(self,name,gender):
    ...         self.name,self.__gender=name,gender
    ...     def set_gender(self,gender):
    ...         self.__gender = gender
    ...     def get_gender(self):
    ...         return self.__gender
    
    # 测试
    
    >>> bart = Student('Bart','male')
    >>> if bart.get_gender() != 'male':
    ...     print('测试失败~!')
    ... else:
    ...     bart.set_gender('female')
    ...     if bart.get_gender() != 'female':
    ...         print('测试失败!')
    ...     else:
    ...         print('测试成功~!')
    ...
    测试成功~!
    
    

    以为是多态,然而是多态,更不止是多态, 只要有 run 方法的 对象 都可以 往里丢 ,这一点注意区分 java 的 接口以及父类

    >>> class Animal(object):
    ...     def run(self):
    ...         print('animal is running...')
    ...
    >>> class Dog(Animal):
    ...     def run(self):
    ...         print('dog is running...')
    ...
    >>> def run_twice(animal):
    ...     animal.run()
    ...     animal.run()
    ...
    >>> run_twice(Animal())
    animal is running...
    animal is running...
    >>> run_twice(Dog())
    dog is running...
    dog is running...
    
    # 逝者如斯,东流不回 ,水不继承自 Animal 类 依旧可以 往 run_twice 这个方法里丢, 在 java 里是编译错误!!!
    >>> class water(object):
    ...     def run(self):
    ...         print('water is running....and never back...')
    ...
    >>> run_twice(water())
    water is running....and never back...
    water is running....and never back...
    

    类型判断 type vs isinstance ==》 isinstance 胜 !!! 总是优先使用 isinstance 判断

    >>> type(123) == int
    True
    >>> isinstance(123,int)
    True
    
    下面这种判断太过于复杂
    判断基本数据类型可以直接写int,str等,但如果要判断一个对象是否是函数怎么办?可以使用types模块中定义的常量:
    
    >>> import types
    >>> def fn():
    ...     pass
    ...
    >>> type(fn)==types.FunctionType
    True
    >>> type(abs)==types.BuiltinFunctionType
    True
    >>> type(lambda x: x)==types.LambdaType
    True
    >>> type((x for x in range(10)))==types.GeneratorType
    True
    
    并且还可以判断一个变量是否是某些类型中的一种,比如下面的代码就可以判断是否是list或者tuple:
    
    >>> isinstance([1, 2, 3], (list, tuple))
    True
    >>> isinstance((1, 2, 3), (list, tuple))
    True
    总是优先使用isinstance()判断类型,可以将指定类型及其子类“一网打尽”。
    
    
    # dir 查看,然后等价
    >>> len('ABC')                                                                                                          3                                                                                                                       >>> dir('ABC')                                                                                                          ['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'capitalize', 'casefold', 'center', 'count', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'format_map', 'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill'] 
    
    # 创建自己的 len 方法, 自己写一个 __len__()  方法就是了
    >>> class myStr():
    ...     def __init__(self,val):
    ...         self.__val = val
    ...     def __len__(self):
    ...         return len(self.__val)
    ...
    >>> myStr('abc')
    <__main__.myStr object at 0x02F363D0>
    >>> len(myStr('abc'))
    3
    >>>
    
    # 查看 python 内建函数
    
    >>> dir(__builtins__)
    ['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException', 'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning', 'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError', 'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning', 'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False', 'FileExistsError', 'FileNotFoundError', 'FloatingPointError', 'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError', 'ImportWarning', 'IndentationError', 'IndexError', 'InterruptedError', 'IsADirectoryError', 'KeyError', 'KeyboardInterrupt', 'LookupError', 'MemoryError', 'ModuleNotFoundError', 'NameError', 'None', 'NotADirectoryError', 'NotImplemented', 'NotImplementedError', 'OSError', 'OverflowError', 'PendingDeprecationWarning', 'PermissionError', 'ProcessLookupError', 'RecursionError', 'ReferenceError', 'ResourceWarning', 'RuntimeError', 'RuntimeWarning', 'StopAsyncIteration', 'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError', 'TimeoutError', 'True', 'TypeError', 'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning', 'ValueError', 'Warning', 'WindowsError', 'ZeroDivisionError', '_', '__build_class__', '__debug__', '__doc__', '__import__', '__loader__', '__name__', '__package__', '__spec__', 'abs', 'all', 'any', 'ascii', 'bin', 'bool', 'bytearray', 'bytes', 'callable', 'chr', 'classmethod', 'compile', 'complex', 'copyright', 'credits', 'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval', 'exec', 'exit', 'filter', 'float', 'format', 'frozenset', 'getattr', 'globals', 'hasattr', 'hash', 'help', 'hex', 'id', 'input', 'int', 'isinstance', 'issubclass', 'iter', 'len', 'license', 'list', 'locals', 'map', 'max', 'memoryview', 'min', 'next', 'object', 'oct', 'open', 'ord', 'pow', 'print', 'property', 'quit', 'range', 'repr', 'reversed', 'round', 'set', 'setattr', 'slice', 'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'vars', 'zip']
    
    # 查看一波
    >>> 'hasattr' in dir(__builtins__)
    True
    >>> 'getattr' in dir(__builtins__)
    True
    >>>
    
    小结
    通过内置的一系列函数,我们可以对任意一个Python对象进行剖析,拿到其内部的数据。要注意的是,只有在不知道对象信息的时候,我们才会去获取对象信息。如果可以直接写:
    
    sum = obj.x + obj.y
    就不要写:
    
    sum = getattr(obj, 'x') + getattr(obj, 'y')
    一个正确的用法的例子如下:
    
    def readImage(fp):
        if hasattr(fp, 'read'):
            return readData(fp)
        return None
    假设我们希望从文件流fp中读取图像,我们首先要判断该fp对象是否存在read方法,如果存在,则该对象是一个流,如果不存在,则无法读取。hasattr()就派上了用场。
    
    请注意,在Python这类动态语言中,根据鸭子类型,有read()方法,不代表该fp对象就是一个文件流,它也可能是网络流,也可能是内存中的一个字节流,但只要read()方法返回的是有效的图像数据,就不影响读取图像的功能。
    
    

    getter setter

    >>> class Student(object):
    ...     def __init__(self,name,*args,**kw):
    ...         self.__name = name
    ...         for arg in args:
    ...               print('arg: {}'.format(arg))
    ...         for key in kw:
    ...               if key == 'city':
    ...                   print('city %s' %kw[key])
    ...     @property
    ...     def score(self):
    ...         return  self._score
    ...     @score.setter
    ...     def score(self,value):
    ...         self._score = value
    ...
    >>> s = Student()
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    TypeError: __init__() missing 1 required positional argument: 'name'
    >>> s = Student('frank',*(1,2,'a',3),**{'city':'changsha','job':'unknown'})
    arg: 1
    arg: 2
    arg: a
    arg: 3
    city changsha
    >>> s.score = 80
    >>> s.score
    80
    
    
    >>> class Screen(object):
    ...     @property
    ...     def width(self):
    ...         return self._width
    ...     @width.setter
    ...     def width(self,width):
    ...          self._width = width
    ...     @property
    ...     def height(self):
    ...          return self._height
    ...     @height.setter
    ...     def height(self,height):
    ...          self._height = height
    ...     @property
    ...     def resolution(self):
    ...          self._resolution = self._width * self._height
    ...          return self._resolution
    ...
    >>> s = Screen()
    >>> s.width = 600
    >>> s.height = 800
    >>> s.resolution
    480000
    
    

    记住标准写法就好,别追问,会晕!!!

    >>> class Student(object):
    ...      def __init__(self,name,score,*args,**kw):
    ...           self._name = name
    ...           self._score = score
    ...           if len(args)!=0:
    ...               self.arg = args[0]
    ...           for key in kw:
    ...               if key == 'city':
    ...                   self.city = kw[key]
    ...      @property
    ...      def name(self):
    ...          return self._name
    ...      @name.setter
    ...      def name(self,name):
    ...          self._name = name
    ...      @property
    ...      def score(self):
    ...           return self._score
    ...      @score.setter
    ...      def score(self,score):
    ...           self._score = score
    ...
    >>> args=('a',1,2)
    >>> kw = {'city':'changsha','job':'unknown'}
    >>> s = Student('frank',100,*args,**kw)
    >>> s.name
    'frank'
    >>> s.score
    100
    >>> s.city
    'changsha'
    >>> s.arg
    'a'
    
    
    
    
    >>> class Student(object):
    ...     def __init__(self,name,age,score,*args,**kw):
    ...         self._name=name
    ...         self._age = age
    ...         self._score = score
    ...         if len(args)!=0:
    ...             self.arg = args[0]
    ...         for key in kw:
    ...             if key == 'city':
    ...                 self.city = kw[key]
    ...     @property
    ...     def name(self):
    ...         return self._name
    ...     @name.setter
    ...     def name(self,name):
    ...         self._name = name
    ...     @property
    ...     def age(self):
    ...         return self._age
    ...     @age.setter
    ...     def age(self,age):
    ...         if not isinstance(age,int):
    ...             raise TypeError('年龄必须为整数!')
    ...         else:
    ...             self._age = age
    ...     @property
    ...     def score(self):
    ...         return self._score
    ...     @score.setter
    ...     def score(self,score):
    ...         if not isinstance(score,int):
    ...             raise TypeError('分数应该为整数!')
    ...         elif not  0<= score <= 100:
    ...             raise ValueError('分数必须介于0-100之间!')
    ...         else:
    ...             self._score = score
    ...
    >>> s = Student('frank',18,100)
    >>> s.name
    'frank'
    >>> s.age
    18
    >>> s.score
    100
    
    
    

    多继承 ,对应 java extends class implements Runnable 这种写法, 只是 python 木有 接口一说 貌似,我也不确定哈,自己去查查吧

    >>> class Animal():
    ...     pass
    ...
    >>> Animal()
    <__main__.Animal object at 0x008DCF30>
    >>> class Mammal(Animal):
    ...     pass
    ...
    >>> class Runnable(object):
    ...     def run(self):
    ...          print('running......')
    ...
    >>> class Flyable(object):
    ...     def fly(self):
    ...         print('flying......')
    ...
    >>> class Dog(Mammal,Runnable):
    ...     pass
    ...
    >>> d = Dog()
    >>> d.run()
    running......
    >>> class Bat(Mammal,Flyable):
    ...     pass
    ...
    ...
    >>> b = Bat()
    >>> b.fly()
    flying......
    

    定制类

    # __slot__  固定 self  属性个数
    # __str__   区别 于  __repr__   前一个 是 返回给 用户的 , 第二个 是 返回给 程序员 用来调试的 
    >>> class Student(object):
    ...      def __init__(self,name):
    ...           self.name = name
    ...      def __str__(self):
    ...           return 'Student object (name = {})'.format(self.name)
    ...      __repr__ = __str__
    ...
    >>> s = Student('frank')
    >>> s
    Student object (name = frank)
    
    

    枚举类

    >>> from enum import Enum
    >>> Month = Enum('Month',('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'))
    >>> for name,member in Month.__members__.items():
    ...     print(name, '=>', member, ',', member.value)
    ...
    Jan => Month.Jan , 1
    Feb => Month.Feb , 2
    Mar => Month.Mar , 3
    Apr => Month.Apr , 4
    May => Month.May , 5
    Jun => Month.Jun , 6
    Jul => Month.Jul , 7
    Aug => Month.Aug , 8
    Sep => Month.Sep , 9
    Oct => Month.Oct , 10
    Nov => Month.Nov , 11
    Dec => Month.Dec , 12
    >>> from enum import Enum,unique
    >>> @unique
    ... class Weekday(Enum):
    ...     Sun=0
    ...     Mon=1
    ...     Tue=2
    ...     Wed=3
    ...     Thu=4
    ...     Fri=5
    ...     Sat =6
    ...
    >>> day1 = Weekday.Sun
    >>> day1
    <Weekday.Sun: 0>
    >>> day1.value
    0
    >>> day1 = Weekday(0)
    >>> day1
    <Weekday.Sun: 0>
    >>> day1.value
    0
    
    >>> for name,member in Weekday.__members__.items():
    ...     print(name,'==>',member)
    ...
    Sun ==> Weekday.Sun
    Mon ==> Weekday.Mon
    Tue ==> Weekday.Tue
    Wed ==> Weekday.Wed
    Thu ==> Weekday.Thu
    Fri ==> Weekday.Fri
    Sat ==> Weekday.Sat
    

    枚举类与错误综合小例子

    >>> class Student(object):
    ...     def __init__(self,name,gender):
    ...          if not isinstance(gender,Gender):
    ...               raise TypeError('{}'.format('传入的性别类型异常'))
    ...          self.__name = name
    ...          self.gender = gender
    ...
    >>> bart = Student('Bart', Gender.Male)
    >>> if bart.gender == Gender.Male:
    ...     print('测试通过!')
    ... else:
    ...     print('测试失败!')
    ...
    测试通过!
    >>> bart = Student('Bart', '男')
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "<stdin>", line 4, in __init__
    TypeError: 传入的性别类型异常
    >>>
    

    元类,我服了!!!

    推荐一篇高分文章读懂元类

    >>> def fn(self,world = 'world!'):
    ...     print('hello {}'.format(world))
    ...
    >>> Hello = type('Hello',(object,),dict(hello = fn))
    >>> h = Hello()
    >>> h.hello()
    hello world!
    
    
    >>> class ListMetaclass(type):
    ...     def __new__(cls,name,bases,attrs):
    ...         attrs['add']=lambda self,value:self.append(value)
    ...         return type.__new__(cls,name,bases,attrs)
    ...
    >>> class MyList(list,metaclass=ListMetaclass):
    ...     pass
    ...
    >>> l = MyList()
    >>> l.add(5)
    >>> l
    [5]
    
    # 类是一种特殊的对象,因为python 是动态语言,可以后期绑定属性方法等
    
    >>> class ObjectCreator():
    ...     pass
    ...
    >>> print(ObjectCreator)
    <class '__main__.ObjectCreator'>
    >>> print(hasattr(ObjectCreator,'new_attribute'))
    False
    >>> ObjectCreator.new_attribute = 'foo'
    >>> print(hasattr(ObjectCreator,'new_attribute'))
    True
    >>> ObjectCreatorMirror = ObjectCreator
    >>> print(ObjectCreatorMirror())
    <__main__.ObjectCreator object at 0x00859A30>
    
    

    异常处理

    >>> def div(a,b):
    ...     if not isinstance(a,int) or not isinstance(b,int):
    ...         raise TypeError('本方法中除数与被除数都要为整数!')
    ...     try:
    ...         r = a/b
    ...         print('r: {}'.format(r))
    ...     except ZeroDivisionError as e:
    ...         print('except: ',e)
    ...     finally:
    ...         print('finally...')
    ...     print('END...')
    
    >>> r = div(1,2)
    r: 0.5
    finally...
    END...
    >>> div(1,0)
    except:  division by zero
    finally...
    END...
    
    
    >>> def foo(i):
    ...     return 10/i
    ...
    >>> def bar(j):
    ...     return foo(j) *2
    
    >>> def main(n):
    ...     try:
    ...         bar(n)
    ...     except ZeroDivisionError as e:
    ...         logging.exception(e)
    ...     finally:
    ...         print('end...')
    ...
    >>> main(5)
    end...
    >>> main(0)
    ERROR:root:division by zero
    Traceback (most recent call last):
      File "<stdin>", line 3, in main
      File "<stdin>", line 2, in bar
      File "<stdin>", line 2, in foo
    ZeroDivisionError: division by zero
    end...
    
    
    改错:
    
    from functools import reduce
    
    def str2num(s):
        try:
            r = int(s)
        except ValueError as e:
            if isinstance(s,str):
                s=s.replace('.','')
                r = int(s)
            else:
                raise ValueError('传入的不是字符串!')
        finally:
            pass
        return int(s)
    
    def calc(exp):
        ss = exp.split('+')
        ns = map(str2num, ss)
        return reduce(lambda acc, x: acc + x, ns)
    
    def main():
        r = calc('100 + 200 + 345')
        print('100 + 200 + 345 =', r)
        r = calc('99 + 88 + 7.6')
        print('99 + 88 + 7.6 =', r)
    
    main()
    
    
    

    既然如此重要,再谈元类

    # 定义一个函数,用来待会儿在 类 内部或绑定,或调用
    def print_s(s):
        print(s)
    
    
    # 定义元类, 必须继承自 type 才可以被当做元类,被反射
    class ObjectCreatorMetaClass(type):
        def __new__(current_class_name,class_tobe_created_name,base_classess_name_tuple,attrs_hold_dict):
            # 打印一波传进来的参数会发现基本跟命名一致
            print_s('current_class_name: {}'.format(current_class_name))
            print_s('class_tobe_created_name: {}'.format(class_tobe_created_name))
            print_s('base_classess_name_tuple: {}'.format(base_classess_name_tuple))
            print_s('attrs_hold_dict: {}'.format(attrs_hold_dict))
            
            
            #为要被创建的类 ObjectCreator 添加方法,属性都可以
            attrs_hold_dict['flag'] = True
            attrs_hold_dict['current_class_name_print'] = print_s(current_class_name)
            attrs_hold_dict['class_tobe_created_name_print'] = print_s(class_tobe_created_name)
            attrs_hold_dict['base_classess_name_tuple_print'] = print_s(base_classess_name_tuple)
            attrs_hold_dict['attrs_hold_dict_print'] = print_s(attrs_hold_dict)
            return type.__new__(current_class_name,class_tobe_created_name,base_classess_name_tuple,attrs_hold_dict)
    
    # 定义我们要被创建的 类,为了方便查看传进去的 base_classess_name_tuple ,我们手动让他继承一下 object
    class ObjectCreator(object,metaclass = ObjectCreatorMetaClass):
            pass
        
    # 思考为什么 第一次打印时候 attrs_hold_dict 会比后一次 打印 少掉一部分属性,方法 (如 'current_class_name_print': None, 'flag': True)
    # 因为这在传进来时候并没有绑定这些参数方法啊,是后面代码 手动绑定的啦 哈哈哈哈或或或
    
    #  上面的理解有点偏差,但愿看到的人能够自己找出,下面是我重新理解的 
    # 定义一个函数,用来待会儿在 类 内部或绑定,或调用
    def print_s(s):
        print(s)
        return s
    
    #必须继承自 type 才可以被当做元类,被反射
    class ObjectCreatorMetaClass(type):
        def __new__(current_class_name,class_tobe_created_name,base_classess_name_tuple,attrs_hold_dict):
            # 打印一波传进来的参数会发现基本跟命名一致
            print_s('current_class_name: {}'.format(current_class_name))
            print_s('class_tobe_created_name: {}'.format(class_tobe_created_name))
            print_s('base_classess_name_tuple: {}'.format(base_classess_name_tuple))
            print_s('attrs_hold_dict: {}'.format(attrs_hold_dict))
            
            
            #为要被创建的类 ObjectCreator 添加方法,属性都可以
            attrs_hold_dict['flag'] = True
            attrs_hold_dict['get_metaclass'] = print_s(current_class_name)
            attrs_hold_dict['get_tobe_created_class'] = print_s(class_tobe_created_name)
            attrs_hold_dict['get_bases_classess_tuple'] = print_s(base_classess_name_tuple)
            attrs_hold_dict['get_attrs_hold_dict'] = print_s(attrs_hold_dict)
            return type.__new__(current_class_name,class_tobe_created_name,base_classess_name_tuple,attrs_hold_dict)
    
    class ObjectCreator(object,metaclass = ObjectCreatorMetaClass):
            pass
        
    # 思考为什么 第一次打印时候 attrs_hold_dict 会比后一次 打印 少掉一部分属性,方法 (如 'current_class_name_print': None, 'flag': True)
    # 因为这在传进来时候并没有绑定这些参数方法啊,是后面代码 手动绑定的啦 哈哈哈哈或或或
    
    object_from_objectcreator = ObjectCreator()
    print(object_from_objectcreator.flag)
    
    
    # 实际上这里返回了
    object_from_objectcreator.get_metaclass
    object_from_objectcreator.get_tobe_created_class
    object_from_objectcreator.get_bases_classess_tuple
    object_from_objectcreator.get_attrs_hold_dict
    
    
    # out:
    # current_class_name: <class '__main__.ObjectCreatorMetaClass'>
    # class_tobe_created_name: ObjectCreator
    # base_classess_name_tuple: (<class 'object'>,)
    # attrs_hold_dict: {'__qualname__': 'ObjectCreator', '__module__': '__main__'}
    # <class '__main__.ObjectCreatorMetaClass'>
    # ObjectCreator
    # (<class 'object'>,)
    # {'get_bases_classess_tuple': (<class 'object'>,), '__qualname__': 'ObjectCreator', 'get_metaclass': <class '__main__.ObjectCreatorMetaClass'>, '__module__': '__main__', 'get_tobe_created_class': 'ObjectCreator', 'flag': True}
    # True
    # {'__module__': '__main__',
    #  '__qualname__': 'ObjectCreator',
    #  'flag': True,
    #  'get_attrs_hold_dict': {...},
    #  'get_bases_classess_tuple': (object,),
    #  'get_metaclass': __main__.ObjectCreatorMetaClass,
    #  'get_tobe_created_class': 'ObjectCreator'}
    
    
    # 到目前为止,我认为元类来创建 类 ,然后 类再创建对象的过程
    # 应该是 定义一个元类继承 type 这个 class  然后 覆写它的 __new__ 方法, TBD。。。
    
    # 曾经沧海,写完下面这个自动转换要被创建的类的属性为大写 , 元类也就会了
    
    class Upper_attr(type):
        def __new__(cls,name,bases,attr_dict):
            attr_dict = dict( (name.upper(),value)  for name,value in attr_dict.items() if not name.startswith('__'))
            print(attr_dict)
            return super(Upper_attr,cls).__new__(cls,name,bases,attr_dict)
        
    class Foo(object,metaclass = Upper_attr):
        bar = 'bip'
        pass
    
    hasattr(Foo,'BAR')
    {'BAR': 'bip'}
    True
    
    
    # 思考为什么 构造函数 __init__ 不能用 lambda 来写函数体 , 因为,lambda 冒号后边必须接的是一个 表达式而非语句
    def __init__(self, x):
        self.x = x
    
    def printX(self):
        print(self.x)
    
    Test = type('Test', (object,), {'__init__': __init__, 'printX': printX})
    class TestMetaclass(type):
        def __new__(cls,name,bases,attr_dict):
            attr_dict['__init__'] = __init__
            attr_dict['printX']= lambda self:print(self.x)
            return super(TestMetaclass,cls).__new__(cls,name,bases,attr_dict)
        
    class Test(object,metaclass = TestMetaclass):
        pass
    
    Test('123').printX()
    

    IO , 文件 , 内存, 字符,字节 类似于 java 的 IO

    import os
    file_list = os.listdir('.')
    for file in file_list:
        file_name,file_extension = os.path.splitext(file)
        if file_extension == '.csv':
            try:
                f = open(file,'r')
                print(f.read())
                print('file name: ',file_name+file_extension)
            except IOError as ioe:
                print(e)
            finally:
                if f:
                    f.close()
                
            print(file_name,'<----->',file_extension)
    
    
    gender,age,drug,complication
    0,1,3,5
    1,3,2,3
    0,5,1,2
    0,2,3,3
    1,7,3,2
    0,6,3,4
    

    file name: mock_data.csv
    mock_data <-----> .csv

    加上 编码,解码方式

    file_list = os.listdir('.')
    kw = {'encoding':'utf8'}
    for file in file_list:
        file_name,file_extension = os.path.splitext(file)
        if file_extension == '.csv':
            try:
                f = open(file,'r',**kw)
                print(f.read())
                print('file name: ',file_name+file_extension)
            except IOError as ioe:
                print(e)
            finally:
                if f:
                    f.close()
                
            print(file_name,'<----->',file_extension)
    
    
    file_list = os.listdir('.')
    kw = {'encoding':'utf8'}
    for file in file_list:
        file_name,file_extension = os.path.splitext(file)
        if file_extension == '.csv':
            try:
                f = open(file,'r',**kw)
    #             print(f.read())
                for line in f.readlines():
                    print(line)
                print('file name: ',file_name+file_extension)
            except IOError as ioe:
                print(e)
            finally:
                if f:
                    f.close()
                
            print(file_name,'<----->',file_extension)
    
    
    # 使用 with 表达式,相当于 java 中的 try(Autoclosable Resources)   语法糖,自动关闭资源
    
    file_list = os.listdir('.')
    kw = {'encoding':'utf8','errors':'ignore'}
    for file in file_list:
        file_name,file_extension = os.path.splitext(file)
        if file_extension == '.csv':
            with open(file,'r',**kw) as f:
                for line in f.readlines():
                    print(line.strip()) # 去掉末尾的换行符
                
            print(file_name,'<----->',file_extension)
    
    # 读写二进制文件 是不能加 errors 参数的
    >>> with open('9.jpg','rb',errors='ignore') as fr:
    ...     with open('99.jpg','wb') as fw:
    ...          for line in fr.readlines():
    ...              fw.write(line)
    ...
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    ValueError: binary mode doesn't take an errors argument
    
    # StringIO , python 3 中 是 from io import StringIO ,内存读写
    # 方式一:
    f = StringIO()
    f.write('Hello
    World!
    ')
    print(f.getvalue())
    
    # 方式二:
    from io import StringIO
    f = StringIO('Hello
    World!
    ')
    # print(f.getvalue())
    while True:
        s = f.readline()
        if s == '':
            break
        print(s.strip())
    
    #  StringIO操作的只能是str,如果要操作二进制数据,就需要使用BytesIO。
    
    #  BytesIO实现了在内存中读写bytes,我们创建一个BytesIO,然后写入一些bytes:
    
    from io import BytesIO
    f = BytesIO()
    f.write('中文'.encode('utf-8'))
    print(f.getvalue())
    结果:
    
    b'xe4xb8xadxe6x96x87'
    
    # 解码:
    from io import BytesIO
    f = BytesIO(b'xe4xb8xadxe6x96x87')
    bcontent = f.read()
    print(bcontent.decode('utf-8'))
    与上一种utf-8 编码相反,用 utf-8 解码, 结果如下:
    '中文'
    

    文件夹目录以及文件相关操作

    # 在当前路径下查找包含指定字符串的 所有文件名,并返回。如果是子目录,需要用到递归,没有写,有空写写
    import os
    def search_file(filename):
        return [file for file in os.listdir('.') if os.path.isfile(file) and filename in file]
    
    for name in search_file('并'):
        print(name)
    并发症逻辑回归准确率.ipynb
    并发症概率模型.ipynb
    
    # api 集中:
    os.path.isdir(x)
    os.listdir('.')
    os.path.isfile(x)
    os.path.splitext(x)[1]=='.py'
    os.name # 操作系统类型   nt 
    os.uname() # 注意uname()函数在Windows上不提供,也就是说,os模块的某些函数是跟操作系统相关的。
    os.environ # 在操作系统中定义的环境变量,全部保存在os.environ这个变量中,可以直接查看:
    os.environ.get('PATH')
    # 查看当前目录的绝对路径:
    >>> os.path.abspath('.')
    '/Users/michael'
    # 在某个目录下创建一个新目录,首先把新目录的完整路径表示出来:
    >>> os.path.join('/Users/michael', 'testdir')
    '/Users/michael/testdir'
    # 然后创建一个目录:
    >>> os.mkdir('/Users/michael/testdir')
    # 删掉一个目录:
    >>> os.rmdir('/Users/michael/testdir')
    # 对文件重命名:
    >>> os.rename('test.txt', 'test.py')
    # 删掉文件:
    >>> os.remove('test.py')
    >>> os.path.split('/Users/michael/testdir/file.txt')
    ('/Users/michael/testdir', 'file.txt')
    
    但是复制文件的函数居然在os模块中不存在!原因是复制文件并非由操作系统提供的系统调用。理论上讲,我们通过上一节的读写文件可以完成文件复制,只不过要多写很多代码。
    
    幸运的是shutil模块提供了copyfile()的函数,你还可以在shutil模块中找到很多实用函数,它们可以看做是os模块的补充。
    
    

    序列化 (内存流向磁盘的过程)与 反序列化(磁盘流向内存的过程)

    # 序列化
    import pickle
    person = {'name':'Bob','age':18,'gender':'Male'}
    d = pickle.dumps(person)
    with open('dump.txt','wb') as fw:
        pickle.dump(d,fw)
    # 反序列化
    with open('dump.txt','rb') as fr:
        d=pickle.load(fr)
        print(d)
    

    序列化为json 串存储到磁盘, 反序列化从磁盘读取 json 串到内存转化为python对象

    import json
    person = dict(name = 'Tom',age = 18,gender='Male')
    #  dumps 将dict 转成 json 字符串
    j = json.dumps(person)
    with open('json.txt','w') as fw:
        # dump 序列化 json 串为文件或类文件对象 (file-like Object)
        json.dump(j,fw)
    
    # loads 方法将 json串反序列化
    json.loads(j)
    with open('json.txt','r') as fr:
        # load 方法将从文件中读取字符串并反序列化为json 串,同时你会发现是反序的
        k = json.load(fr)
        print(k)
    
    

    再进一阶,序列化与反序列化 json 串 between 对象

    import json
    class Student(object):
        def __init__(self,name,age,sex):
            self.name = name
            self.age = age
            self.sex = sex
            
    s = Student('Tom',18,'Male')
    def student2str(std):
        return dict(name=std.name,age=std.age,sex=std.sex)
    json.dumps(student2str(s))
    json.dumps(s,default=lambda obj:obj.__dict__)
    
    '{"sex": "Male", "age": 18, "name": "Tom"}'
    
    #将上面的 json 字符串转换为 Student 对象
    json_str = '{"sex": "Male", "age": 18, "name": "Tom"}'
    def dict2student(d):
        return Student(d['name'],d['age'],d['sex'])
    s = json.loads(json_str,object_hook=dict2student)
    s.name
    
    结果:
    'Tom'
    

    小结

    Python语言特定的序列化模块是pickle,但如果要把序列化搞得更通用、更符合Web标准,就可以使用json模块。

    json模块的dumps()和loads()函数是定义得非常好的接口的典范。当我们使用时,只需要传入一个必须的参数。但是,当默认的序列化或反序列机制不满足我们的要求时,我们#### 又可以传入更多的参数来定制序列化或反序列化的规则,既做到了接口简单易用,又做到了充分的扩展性和灵活性。

    内建模块以及常用第三方模块

    import urllib.request as urllib2
    import random
    ua_list=["Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv2.0.1) Gecko/20100101 Firefox/4.0.1",
            "Mozilla/5.0 (Windows NT 6.1; rv2.0.1) Gecko/20100101 Firefox/4.0.1",
            "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; en) Presto/2.8.131 Version/11.11",
            "Opera/9.80 (Windows NT 6.1; U; en) Presto/2.8.131 Version/11.11",
            "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11"]
    u_agent = random.choice(ua_list)
    # print(u_agent)
    url = 'http://www.baidu.com'
    request = urllib2.Request(url=url)
    request.add_header("User_agent",u_agent)
    response = urllib2.urlopen(request)
    print(response.read())
    

    其他

    标准数据类型
    Python3 中有六个标准的数据类型:
    
    Number(数字)
    String(字符串)
    List(列表)
    Tuple(元组)
    Sets(集合)
    Dictionary(字典)
    Python3 的六个标准数据类型中:
    
    不可变数据(四个):Number(数字)、String(字符串)、Tuple(元组)、Sets(集合);
    可变数据(两个):List(列表)、Dictionary(字典)。
    Set(集合)
    集合(set)是一个无序不重复元素的序列。
    
    基本功能是进行成员关系测试和删除重复元素。
    
    # 字符串的一些内建函数需要掌握 ,首字母大写 capitalize(),lower(),upper() 等等
    a = 'frank'
    a.capitalize()
    
    可以使用大括号 { } 或者 set() 函数创建集合,注意:创建一个空集合必须用 set() 而不是 { },因为 { } 是用来创建一个空字典。
    
    # set可以进行集合运算
    a = set('abracadabra')
    b = set('alacazam')
     
    print(a)
     
    print(a - b)     # a和b的差集
     
    print(a | b)     # a和b的并集
     
    print(a & b)     # a和b的交集
     
    print(a ^ b)     # a和b中不同时存在的元素
    
    dict_1 = dict(name='frank',age=18)  # 这写法我喜欢
    dict_1 = {'name':'frank','age':18}  # 这写法也能接受
    dict_1 = dict([('name','frank'),('age',18)])   # 这种写法我觉得纯粹是有病。。。
    
    
    删除引用,估算引用,查询引用
    del b
    eval('b') 
    hex(id(b))   # 16 进制 hash值
    # str()出来的值是给人看的。。。repr()出来的值是给python看的,可以通过eval()重新变回一个Python对象
    a = 'a'
    eval('a')
    hex(id(a))
    eval(repr(a))
    
    # print 默认输出是换行的,如果要实现不换行需要在变量末尾加上 end="":
    # 不换行输出
    print( x, end=" " )
    print( y, end=" " )
    dict  items() , keys(), values()
    list  pop , append
    import keyword
    keyword.kwlist
    
    #  dict 是个好命令
    dir(dict)
    '__setitem__',
     '__sizeof__',
     '__str__',
     '__subclasshook__',
     'clear',
     'copy',
     'fromkeys',
    
    


    python 日志

    # 这段代码保存为 config.py
    # -*- coding: utf-8 -*-
    __author__ = 'Frank Li'
    import logging
    class Config():
        # 创建一个logger
        logger = logging.getLogger('statisticNew')
        logger.setLevel(logging.DEBUG)
    
        # 创建一个handler,用于写入日志文件
        fh = logging.FileHandler('test.log')
        fh.setLevel(logging.DEBUG)
    
        # 再创建一个handler,用于输出到控制台
        ch = logging.StreamHandler()
        ch.setLevel(logging.DEBUG)
    
        # 定义handler的输出格式
        formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
        fh.setFormatter(formatter)
        ch.setFormatter(formatter)
    
        # 给logger添加handler
        logger.addHandler(fh)
        logger.addHandler(ch)
        def getLog(self):
            return self.logger
    
    

    引用上段代码保存的额 config.py 文件里的module

    __author__ = 'Frank Li'
    from config import Config
    if __name__ == '__main__':
        conf = Config()
        logger = conf.getLog()
        logger.info('foorbar')
        boy = "Frank Li"
        is_handsome = True
        logger.info("boy=%s,is_handsome=%s",boy,is_handsome)
       
    # 异常处理,以后尽量不要用山寨的 print 了
    
    try:
       ....  
    except Exception as e:
        logger.exception('ERROR readFile:%s,%s' % (path,str(e)))
    

    编码规范 , 变量定义

    #  Python变量命名用法(一般变量、常量、私有变量、内置变量)
    #coding:utf8
    __author__ = "libingxian"
    
    class TestDemo(object):
        """
        Python变量命名用法(以字符或者下划线开头,可以包括字母、数字、下划线,区别大小写)
        一般变量
        常量
        私有变量
        内置变量
        """
        FINAL_VAR = "V1.0" # 常量,不可修改的变量,以大写字母或加下划线命名,这个只是约定,即使更改了也不会报错
    
        class_name = "TestDemo" # 常见变量命名,
    
        __maker__ = 'libingxian' # 内置变量,两个前置下划线和两个后置下划线,内置对象所具有,声明时不可与内置变量名的重复
    
        def __init__(self):
            self.__private_var = "private" # 私有变量,以两个前置下划线开头,只能在本类中使用,类外强制访问会报错
            self.public_var = "public" # 一般变量
    
        def __private_method(self):# 私有方法,以两个下划线开头、字母小写,只能在本类中使用,类外强制访问会报错
            print "i am private"
    
        def public_method(self):
            print "i am public"
    
    test_demo = TestDemo()
    print test_demo.FINAL_VAR # 访问常量
    print test_demo.public_var # 访问一般变量
    print test_demo.__private_var # 访问私有变量,运行会报错
    test_demo.__private_method() # 访问私有方法,运行会报错
    

    字典操作 dict_1.update(dict_2) 合并 dict

    dict_1 = {'name':'Frank','age':18}
    gender_dict = {'gender':'Male'}
    dict_1.update(gender_dict)
    print(dict_1)
    

    字典推导式

    mcase = {'a': 10, 'b': 34, 'A': 7, 'Z': 3}
    
    mcase_frequency = {
        k.lower(): mcase.get(k.lower(), 0) + mcase.get(k.upper(), 0)
        for k in mcase.keys()
    }
    
    # mcase_frequency == {'a': 17, 'z': 3, 'b': 34}
    
    # key,value 交换
    >>> {value:key for key,value in dict_1.items()}
    {'Frank': 'name', 18: 'age'}
    

    由 两个 list 合并 dict 原理是利用 zip 合并成 ((key1,value1),(key2,value2)) 然后用 dict[key] = value 方式

    list_1 = ['name','age']
    list_2 = ['Frank',18]
    person_dict = {}
    for key,value in zip(list_1,list_2):
        person_dict[key] = value
    print(person_dict)
    
    # 反过来   zip(*zipped)   ==> flattern
    dict_2 = dict(name='Frank',age=18)
    list_3,list_4 = zip(*[ [key,value] for key,value in dict_2.items()])
    list_3,list_4
    
    

    list 去重

    # 方法一 
    l1 = ['b','c','d','b','c','a','a']
    l2 = {}.fromkeys(l1).keys()
    print(l2)
    # 方法二
    l3 = list(set(l1))
    
    # 方法三
    >>> a=[1,2,4,2,4,5,7,10,5,5,7,8,9,0,3]
    >>> a.sort()
    >>> a
    [0, 1, 2, 2, 3, 4, 4, 5, 5, 5, 7, 7, 8, 9, 10]
    >>> last = a[-1]
    >>> for i in range(len(a)-2,-1,-1):
    ...     if last == a[i]:
    ...         del a[i]
    ...     else:
    ...         last = a[i]
    ...
    >>> a
    [0, 1, 2, 3, 4, 5, 7, 8, 9, 10]
    
    # 封装成方法 distinct
    >>> def distinct(lst):
    ...     lst.sort()
    ...     last = lst[-1]  # 这里不正向的原因是lst长度会改变
    ...     for i in range(len(lst)-2,-1,-1): # 倒序来比较列表
    ...         if last == lst[i]:
    ...             del lst[i] # 如果与已经有的值相同则删除
    ...         else:    # 否则则将 last 指向前一个元素
    ...             last = lst[i]
    ...     return lst
    distinct([1,2,4,2,4,5,7,10,5,5,7,8,9,0,3])
    
    
    # 三元运算  还可以用 元组条件表达式的三元运算   is_fat =('not fat','fat') [is_state]
    >>> is_state = True
    >>> is_fat = 'fat' if is_state else 'not fat'
    >>> is_fat
    'fat'
    
    # 优雅地查出重复数据
    >>> str_list = ['a','b','a','c','d','b','c']
    >>> [s for s in str_list if str_list.count(s) >1]
    ['a', 'b', 'a', 'c', 'b', 'c']
    >>> set([s for s in str_list if str_list.count(s) >1])
    {'a', 'c', 'b'}
    
    # 求交集 差集
    >>> str_list2 = ['a','b']
    >>> str_list = set([s for s in str_list if str_list.count(s) >1])
    >>> str_list.intersection(str_list2)
    {'a', 'b'}
    >>> str_list.difference(str_list2)
    {'c'}
    

    列表排序

    列表排序
    
        a = [(1, 2), (4, 1), (9, 10), (13, -3)]
        a.sort(key=lambda x: x[1])
    
        print(a)
        # Output: [(13, -3), (4, 1), (1, 2), (9, 10)]
    

    列表并行排序

    list_1 = [8,4,3,2,7,6,5]
    list_2 = ['e','d','c','y','i','o','p']
    data = zip(list_1,list_2)
    data = sorted(data)
    list1, list2 = map(lambda t: list(t), zip(*data))
    print(list1)
    print(list2)
    

    模拟 with open

    >>> class File(object):
    ...    def __init__(self,file_name,method):
    ...        self.file_obj = open(file_name,method)
    ...    def __enter__(self):
    ...        return self.file_obj
    ...    def __exit__(self,type,value,traceback):
    ...        self.file_obj.close()
    ...
    >>> with File('C:/Users/FrankLi/Desktop/Demo.java','r') as f:
    ...     for line in f.readlines():
    ...         print(line)
    ...
    class Demo{
    
            public static void main(String[] args){
    
                    System.out.println("Hello world!");
    
            }
    
    }
    我们的__exit__函数接受三个参数。这些参数对于每个上下文管理器类中的__exit__方法都是必须的。我们来谈谈在底层都发生了什么。
    
    with语句先暂存了File类的__exit__方法
    然后它调用File类的__enter__方法
    __enter__方法打开文件并返回给with语句
    打开的文件句柄被传递给opened_file参数
    我们使用.write()来写文件
    with语句调用之前暂存的__exit__方法
    __exit__方法关闭了文件
    

    类似于 scala 的 flattern 列表展平

    >>> import itertools
    >>> a_list = [[1,2],[3,4],[5,6]]
    >>> print(itertools.chain(*a_list))
    <itertools.chain object at 0x039E6090>
    >>> print(list(itertools.chain(*a_list)))
    [1, 2, 3, 4, 5, 6]
    >>> print(list(itertools.chain.from_iterable(a_list)))
    [1, 2, 3, 4, 5, 6]
    
    >>> l = [[1,2,3],[4,5,6], [7], [8,9]]
    >>> [item for sublist in l for item in sublist] # 推导式中两层 for 循环也可以实现
    [1, 2, 3, 4, 5, 6, 7, 8, 9]
    
    

    for - else 结构

    for n in range(2, 100):
        for x in range(2, n):
            if n % x == 0:
                print(n, 'equals', x, '*', n / x)
                break
        else:
            # loop fell through without finding a factor
            print(n, 'is a prime number')
    
    # 替代 switch case 方案 字典映射
    >>> def switch(x):
    ...     return {'0':0,'1':1,'2':2}.get(x,'nothing')
    ...
    >>> switch('0')
    0
    >>> switch('3')
    'nothing'
    

    16.检查一个字符串是否是一个数字?

    In[22]: x = '569789'
    
    In[23]: x.isdigit()
    
    Out[23]: True
    
    In[24]: y = 'gdf2667'
    
    In[25]: y.isdigit()
    
    Out[25]: False
    
    

    17.查找列表中某个元素的下标?

    In[26]: ['a','b','c'].index('b')
    
    Out[26]: 1
    

    18.如何在列表中随机取一个元素?

    import random
    
    f= ['a', 'b', 'c']
    
    print(random.choice(f))
    
    
    # 字典排序
    >>> dict_1 = {'a':3,'b':1,'c':2}
    >>> sorted(dict_1.items(),key=lambda x:x[1])
    [('b', 1), ('c', 2), ('a', 3)]
    
    >>> import operator
    >>> file_dict={"a":1,"b":2,"c":3}
    >>> sorted(file_dict.items(),key = operator.itemgetter(1),reverse=True)
    [('c', 3), ('b', 2), ('a', 1)]
    
    
    # 字符串的不可变形 = immutability
    Str1 = 'Yuxl'
    print(Str1)
    try:
        Str1[0] = 'XX'
    except:
        print("不可更改")
    Yuxl
    不可更改
    
    >>> import random
    >>> def g_rand_range(max):
    ...     for i in range(1,max+1,1):
    ...         yield random.randint(1,10)
    ...
    >>> for i in g_rand_range(10):
    ...     print(i)
    
    

    别人的总结图

    Python 基础知识总结图

    JAVA vs PYTHON (还没细看)

    jvsp

    总结:

    至此,关于 python 基础的总结基本完结,其中有涉及到高阶知识 , 元类,位置参数关键字参数 可变参数(*args type: tuple,**kwargs type: dict),
    生成器,装饰器,函数式编程风格的 map reduce filter sorted上下文管理器, 要补充的有 : 进程线程协程,异步io
    接下来的时间应该是 学习 python 的重要常用模块(Pandas,Numpy,Scipy,PIL pillow , opencv,sk-learn,xgboost,爬虫库 scrappy等)以及框架(Django)

    最后感慨一下,如果一开始碰到了python 也许根本就不会去学java了,感觉python的设计思想比较符合我的思想各种黑魔法的魅力吸引着我!!!
    (虽然java不可否认也是一门优雅的工程化设计语言但不够精简,语法冗长)。。。life is short , I use python and java ! 其实语言本身没有好坏,
    只有适用场景(多一门语言能力便多一种工具,而工具可以提高效率!),

    每一门语言都有自己的设计思想,一个合格的程序员应该多学几门语言,了解怎样用不同的方法和思维去解决同一个问题。因此学习多门并不仅仅是为了更好的装逼!!!

    我曾经还一直在想为什么没有出现一门语言一统天下呢 现在想想也是天真。。。
    不过语言始终流于招式,接下来是要修炼一波内功了,算法才是灵魂!

    如果有来生,一个人去远行,看不同的风景,感受生命的活力。。。
  • 相关阅读:
    Python使用Django创建第一个项目
    如何使用RobotFramework编写好的测试用例
    接口测试 总结(什么是接口测试)
    APP接口测试
    Django基础五之中间件
    Django基础五之django模型层(二)多表操作
    Django基础五之django模型层(一)单表操作
    Django基础四之模板系统
    Django基础三之视图函数
    DJANGO2--url路由
  • 原文地址:https://www.cnblogs.com/Frank99/p/9111124.html
Copyright © 2011-2022 走看看