题目链接:https://ac.nowcoder.com/acm/contest/879/B
题意:题目意思就是求ΣC(n,i)pi(MOD+1-p)n-i (k<=i<=n),这里n,i范围为1e5,要用到逆元求组合数。
AC代码:
#include<cstdio> using namespace std; typedef long long LL; const LL MOD =998244353; const int maxn=100005; LL n,k,p,ans; LL inv[maxn],F[maxn],Finv[maxn]; void init(){ inv[1]=1; for(int i=2;i<=100000;++i) inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD; F[0]=Finv[0]=1; for(int i=1;i<=100000;++i){ F[i]=F[i-1]*i%MOD; Finv[i]=Finv[i-1]*inv[i]%MOD; } } LL qpow(LL a,LL b){ LL ret=1; while(b){ if(b&1) ret=(ret*a)%MOD; a=(a*a)%MOD; b>>=1; } return ret; } LL C(LL n,LL m){ if(m<0||m>n) return 0; return F[n]*Finv[m]%MOD*Finv[n-m]%MOD; } int main(){ init(); scanf("%lld%lld%lld",&n,&k,&p); for(LL i=k;i<=n;++i){ ans+=C(n,i)*qpow(p,i)%MOD*qpow(MOD+1-p,n-i)%MOD; ans%=MOD; } printf("%lld ",ans); return 0; }