zoukankan      html  css  js  c++  java
  • 代码面试最常用的10大算法(五)

    8.位操作符:

    从一个给定的数n中找位i(i从0开始,然后向右开始)

    1
    2
    3
    4
    5
    6
    7
    8
    9
    public static boolean getBit(int num, int i){
        int result = num & (1<<i);
      
        if(result == 0){
            return false;
        }else{
            return true;
        }
    }

    例如,获取10的第二位:

    1
    2
    3
    4
    i=1, n=10
    1<<1= 10
    1010&10=10
    10 is not 0, so return true;

    典型的位算法:

    Find Single Number

    The problem:

    Given an array of integers, every element appears twice except for one. Find that single one.

    Thoughts

    The key to solve this problem is bit manipulation. XOR will return 1 only on two different bits. So if two numbers are the same, XOR will return 0. Finally only one number left.

    Java Solution

    public class Solution {
        public int singleNumber(int[] A) {
            int x=0;
     
            for(int a: A){
                x = x ^ a;
            }
     
            return x;
        }
    }

    Maximum Binary Gap

    Problem: Get maximum binary Gap.

    For example, 9′s binary form is 1001, the gap is 2.

    Thoughts

    The key to solve this problem is the fact that an integer x & 1 will get the last digit of the integer.

    Java Solution

    public class Solution {
    	public static int solution(int N) {
    		int max = 0;
    		int count = -1;
    		int r = 0;
     
    		while (N > 0) {
    			// get right most bit & shift right
    			r = N & 1;
    			N = N >> 1;
     
    			if (0 == r && count >= 0) {
    				count++;
    			}
     
    			if (1 == r) {
    				max = count > max ? count : max;
    				count = 0;
    			}
    		}
     
    		return max;
    	}
     
    	public static void main(String[] args) {
    		System.out.println(solution(9));
    	}
    }

    9.概率

    
    

    通常要解决概率相关问题,都需要很好地格式化问题,下面提供一个简单的例子:

    
    
    有50个人在一个房间,那么有两个人是同一天生日的可能性有多大?(忽略闰年,即一年有365天)
    
    

    算法:

    
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    public static double caculateProbability(int n){
        double x = 1;
      
        for(int i=0; i<n; i++){
            x *=  (365.0-i)/365.0;
        }
      
        double pro = Math.round((1-x) * 100);
        return pro/100;
    }
    结果:
    1
    calculateProbability(50) = 0.97
    
    

    10.组合和排列

    
    

    组合和排列的主要差别在于顺序是否重要。

    
    

    例1:

    
    
    1、2、3、4、5这5个数字,输出不同的顺序,其中4不可以排在第三位,3和5不能相邻,请问有多少种组合?
    
    

    例2:

    
    
    有5个香蕉、4个梨、3个苹果,假设每种水果都是一样的,请问有多少种不同的组合?
    
    

    基于它们的一些常见算法

    排列1

    Given a collection of numbers, return all possible permutations.

    For example,
    [1,2,3] have the following permutations:
    [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], and [3,2,1].
    

    Java Solution 1

    We can get all permutations by the following steps:

    [1]
    [2, 1]
    [1, 2]
    [3, 2, 1]
    [2, 3, 1]
    [2, 1, 3]
    [3, 1, 2]
    [1, 3, 2]
    [1, 2, 3]
    

    Loop through the array, in each iteration, a new number is added to different locations of results of previous iteration. Start from an empty List.

    public ArrayList<ArrayList<Integer>> permute(int[] num) {
    	ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
     
    	//start from an empty list
    	result.add(new ArrayList<Integer>());
     
    	for (int i = 0; i < num.length; i++) {
    		//list of list in current iteration of the array num
    		ArrayList<ArrayList<Integer>> current = new ArrayList<ArrayList<Integer>>();
     
    		for (ArrayList<Integer> l : result) {
    			// # of locations to insert is largest index + 1
    			for (int j = 0; j < l.size()+1; j++) {
    				// + add num[i] to different locations
    				l.add(j, num[i]);
     
    				ArrayList<Integer> temp = new ArrayList<Integer>(l);
    				current.add(temp);
     
    				//System.out.println(temp);
     
    				// - remove num[i] add
    				l.remove(j);
    			}
    		}
     
    		result = new ArrayList<ArrayList<Integer>>(current);
    	}
     
    	return result;
    }

    Java Solution 2

    We can also recursively solve this problem. Swap each element with each element after it.

    public ArrayList<ArrayList<Integer>> permute(int[] num) {
    	ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
    	permute(num, 0, result);
    	return result;
    }
     
    void permute(int[] num, int start, ArrayList<ArrayList<Integer>> result) {
     
    	if (start >= num.length) {
    		ArrayList<Integer> item = convertArrayToList(num);
    		result.add(item);
    	}
     
    	for (int j = start; j <= num.length - 1; j++) {
    		swap(num, start, j);
    		permute(num, start + 1, result);
    		swap(num, start, j);
    	}
    }
     
    private ArrayList<Integer> convertArrayToList(int[] num) {
    	ArrayList<Integer> item = new ArrayList<Integer>();
    	for (int h = 0; h < num.length; h++) {
    		item.add(num[h]);
    	}
    	return item;
    }
     
    private void swap(int[] a, int i, int j) {
    	int temp = a[i];
    	a[i] = a[j];
    	a[j] = temp;
    }

    排列2

    Given a collection of numbers that might contain duplicates, return all possible unique permutations.

    
    
    For example,
    [1,1,2] have the following unique permutations:
    [1,1,2], [1,2,1], and [2,1,1].
    
    
    

    Thoughts

    
    

    Basic idea: For each number in the array, swap it with every element after it. To avoid duplicate, need to check it first.

    
    

    Java Solution

    
    
    public ArrayList<ArrayList<Integer>> permuteUnique(int[] num) {
    	ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
    	permuteUnique(num, 0, result);
    	return result;
    }
     
    private void permuteUnique(int[] num, int start, ArrayList<ArrayList<Integer>> result) {
     
    	if (start >= num.length ) {
    		ArrayList<Integer> item = convertArrayToList(num);
    		result.add(item);
    	}
     
    	for (int j = start; j <= num.length-1; j++) {
    		if (containsDuplicate(num, start, j)) {
    			swap(num, start, j);
    			permuteUnique(num, start + 1, result);
    			swap(num, start, j);
    		}
    	}
    }
     
    private ArrayList<Integer> convertArrayToList(int[] num) {
    	ArrayList<Integer> item = new ArrayList<Integer>();
    	for (int h = 0; h < num.length; h++) {
    		item.add(num[h]);
    	}
    	return item;
    }
     
    private boolean containsDuplicate(int[] arr, int start, int end) {
    	for (int i = start; i <= end-1; i++) {
    		if (arr[i] == arr[end]) {
    			return false;
    		}
    	}
    	return true;
    }
     
    private void swap(int[] a, int i, int j) {
    	int temp = a[i];
    	a[i] = a[j];
    	a[j] = temp;
    }


    排列顺序

    The set [1,2,3,…,n] contains a total of n! unique permutations.

    By listing and labeling all of the permutations in order,
    We get the following sequence (ie, for n = 3):

    "123"
    "132"
    "213"
    "231"
    "312"
    "321"
    

    Given n and k, return the kth permutation sequence.

    Note: Given n will be between 1 and 9 inclusive.

    Thoughts

    Naively loop through all cases will not work.

    Java Solution 1

    public class Solution {
    	public String getPermutation(int n, int k) {
     
    		// initialize all numbers
    		ArrayList<Integer> numberList = new ArrayList<Integer>();
    		for (int i = 1; i <= n; i++) {
    			numberList.add(i);
    		}
     
    		// change k to be index
    		k--;
     
    		// set factorial of n
    		int mod = 1;
    		for (int i = 1; i <= n; i++) {
    			mod = mod * i;
    		}
     
    		String result = "";
     
    		// find sequence
    		for (int i = 0; i < n; i++) {
    			mod = mod / (n - i);
    			// find the right number(curIndex) of
    			int curIndex = k / mod;
    			// update k
    			k = k % mod;
     
    			// get number according to curIndex
    			result += numberList.get(curIndex);
    			// remove from list
    			numberList.remove(curIndex);
    		}
     
    		return result.toString();
    	}
    }

    Java Solution 2

    public class Solution {
    	public String getPermutation(int n, int k) {
    		boolean[] output = new boolean[n];
    		StringBuilder buf = new StringBuilder("");
     
    		int[] res = new int[n];
    		res[0] = 1;
     
    		for (int i = 1; i < n; i++)
    			res[i] = res[i - 1] * i;
     
    		for (int i = n - 1; i >= 0; i--) {
    			int s = 1;
     
    			while (k > res[i]) {
    				s++;
    				k = k - res[i];
    			}
     
    			for (int j = 0; j < n; j++) {
    				if (j + 1 <= s && output[j]) {
    					s++;
    				}
    			}
     
    			output[s - 1] = true;
    			buf.append(Integer.toString(s));
    		}
     
    		return buf.toString();
    	}
    }
     
     
  • 相关阅读:
    MVC系列14-后台我的文章页
    MVC系列-13.前台文章显示页
    MVC系列-12.项目的重新规划
    MVC系列-11.两表联合-发表文章
    MVC系列-10.用户验证-导航条改造
    百思不得姐第4天:文本框占位文字颜色
    swift学习:自定义Log
    swift学习第十六天:懒加载和tableView
    swift学习第十五天:闭包
    swift学习第十四天:属性监听器
  • 原文地址:https://www.cnblogs.com/Free-Thinker/p/3682858.html
Copyright © 2011-2022 走看看