D. Substring
time limit: per test3 seconds
memory limit: per test256 megabytes
inputstandard: input
outputstandard: output
You are given a graph with nodes and directed edges. One lowercase letter is assigned to each node. We define a path’s value as the number of the most frequently occurring letter. For example, if letters on a path are “abaca”, then the value of that path is . Your task is find a path whose value is the largest.
Input
The first line contains two positive integers , denoting that the graph has nodes and directed edges.
The second line contains a string with only lowercase English letters. The -th character is the letter assigned to the -th node.
Then m lines follow. Each line contains two integers , describing a directed edge from to . Note that can be equal to and there can be multiple edges between and . Also the graph can be not connected.
Output
Output a single line with a single integer denoting the largest value. If the value can be arbitrarily large, output instead.
Examples
input
5 4
abaca
1 2
1 3
3 4
4 5
output
3
input
6 6
xzyabc
1 2
3 1
2 3
5 4
4 3
6 4
output
-1
input
10 14
xzyzyzyzqx
1 2
2 4
3 5
4 5
2 6
6 8
6 5
2 10
3 9
10 9
4 6
1 10
2 8
3 7
output
4
Note
In the first sample, the path with largest value is . The value is because the letter ‘a’ appears times.
题意
给出有个点和条边的有向图,每个节点上有一个小写字母,求所有通路中出现次数最多的字母出现的次数,如果出现了无数次,输出
Solve
用拓扑排序判断图中是否有环,如果有环,那么环上的字母出现的次数为无限多次,输出。
如果能够进行拓扑排序,对于每次遍历的节点,更新当前路上字母出现次数的最大值
表示到达节点,字母出现的最大次数
Code
#include <bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define ms(a,b) memset(a,b,sizeof(a))
#define INF 0x7f7f7f7f
const int maxn=1e6+10;
const int mod=1e9+7;
using namespace std;
int n,m;
char ch[maxn];
int visi[maxn];
// dp[i][j]表示到i位置,字母j出现的最多次数
int dp[maxn][50];
int cnt;
vector<int>v[maxn];
queue<int>que;
void topo()
{
for(int i=1;i<=n;i++)
if(!visi[i])
{
que.push(i);
dp[i][ch[i]-'a']++;
}
while(!que.empty())
{
cnt++;
int res=que.front();
que.pop();
int sz=v[res].size();
for(int i=0;i<sz;i++)
{
visi[v[res][i]]--;
if(!visi[v[res][i]])
que.push(v[res][i]);
for(int j=0;j<26;j++)
dp[v[res][i]][j]=max(dp[v[res][i]][j],dp[res][j]+(ch[v[res][i]]-'a'==j));
}
}
if(cnt<n)
cout<<-1<<endl;
else
{
int ans=0;
for(int i=1;i<=n;i++)
{
for(int j=0;j<26;j++)
ans=max(ans,dp[i][j]);
}
cout<<ans<<endl;
}
}
int main(int argc, char const *argv[])
{
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n>>m;
cin>>(ch+1);
ms(visi,0);
int x,y;
for(int i=0;i<m;i++)
{
cin>>x>>y;
v[x].push_back(y);
visi[y]++;
}
topo();
return 0;
}