好难,得分40/400;
加个0不就满分了吗
T1写了个最小生成树,但没有考虑完全;
题意:从N个点中取M个点生成一棵最小生成树,使他的边权与点权的比值最小;
由于N及其小,可以枚举取哪些点来做一棵最小生成树;
为了避免精度问题,可以考虑去分母变成乘法
代码
#include<iostream> #include<cstdio> #include<algorithm> #include<cctype> #include<cstring> #define oyy main using namespace std; inline int read() { int x=0,f=1;char c=getchar(); while(!isdigit(c)){if(c=='-')f=-1;c=getchar();} while(isdigit(c)){x=(x<<3)+(x<<1)+(c^48);c=getchar();} return x*f; } int w[20],m,n; int mp[20][20]; int ans[20],v[20],temp[20],ans1=1,ans2=1,bq,dq; void prime() { int d[20]={},vv[20]={}; memset(d,0x3f,sizeof(d)); d[temp[1]]=0; for(int i=1;i<=m;i++) { int k=0,minn=0x7ffff; for(int j=1;j<=m;j++) if(!vv[temp[j]]&&minn>d[temp[j]]) { minn=d[temp[j]];k=temp[j]; } vv[k]=1; for(int j=1;j<=m;j++) if(!vv[temp[j]]&&d[temp[j]]>mp[k][temp[j]])d[temp[j]]=mp[k][temp[j]]; } for(int i=1;i<=m;i++) { bq+=d[temp[i]]; dq+=w[temp[i]]; } if(bq*ans2<dq*ans1) { for(int i=1;i<=m;i++) ans[i]=temp[i]; ans1=bq; ans2=dq; } return; } void dfs(int x,int i) { if(x==m) { bq=0;dq=0; prime(); return; } i++; for(;i<=n;i++) if(!v[i]) { x++; temp[x]=i; v[i]=1; dfs(x,i); temp[x]=0; v[i]=0; x--; } } inline int cmp(int x,int y){return x<y;} int oyy() { freopen("ratio.in","r",stdin);freopen("ratio.out","w",stdout); n=read();m=read(); for(int i=1;i<=n;i++) w[i]=read(); for(int i=1;i<=n;i++) for(int j=1;j<=n;j++){ mp[i][j]=read();if(i==j)mp[i][j]=0x7ffff;} dfs(0,0); sort(ans+1,ans+m+1,cmp); for(int i=1;i<=m;i++) cout<<ans[i]<<" "; return 0; }
T2二分答案!;
时间只在1~10000;
设 $f[i][j]$ 表示前 $i$ 个人做了 $j$ 个1任务后能做的最多2任务的个数;
转移显然 $f[i][j]=max{f[i][j],f[i-1][j-k]+(ans-k*A[i])/B[i]}$
复杂度$O(n*m^2*log(10000))$
#include<iostream> #include<cstdio> #include<algorithm> #include<cctype> #define oyy main using namespace std; inline int read() { int x=0,f=1;char c=getchar(); while(!isdigit(c)){if(c=='-')f=-1;c=getchar();} while(isdigit(c)){x=(x<<3)+(x<<1)+(c^48);c=getchar();} return x*f; } int a[110],b[110],n,m; inline bool check(int ans) { int f[120][200]={}; for(int i=0;i<=n;i++) { for(int j=1;j<=m;j++) f[i][j]=-0x3f3f3f; f[i][0]=0; } for(int i=1;i<=n;i++) for(int j=0;j<=m;j++) for(int k=0;k<=j;k++) { if(k*a[i]<=ans) f[i][j]=max(f[i][j],f[i-1][j-k]+(ans-k*a[i])/b[i]); } return f[n][m]>=m; } int oyy() { freopen("company.in","r",stdin);freopen("company.out","w",stdout); n=read();m=read(); for(int i=1;i<=n;i++) a[i]=read(),b[i]=read(); int l=1,r=10000,mid=l+r>>1; while(l<r) { if(!check(mid))l=mid+1; else r=mid; mid=l+r>>1; } cout<<mid<<endl; return 0; }
T3转化一下模型,把每两个星系之间连一条边,弗洛伊德乱搞一下就过了,
要不是三维立体太难想,我考场就做了。
三维算距离是$sqrt{(Delta x)^2+(Delta y)^2+(Delta z)^2}$
再减去两个星系半径就是距离,如果小于$0$就用$0$代替(毕竟距离没有负的)
#include<iostream> #include<cstdio> #include<cctype> #include<cmath> #define oyy main using namespace std; inline int read() { int x=0,f=1;char c=getchar(); while(!isdigit(c)){if(c=='-')f=-1;c=getchar();} while(isdigit(c)){x=(x<<3)+(x<<1)+(c^48);c=getchar();} return x*f; } double mp[103][103]; int n; struct node{ int x,y,z,r; }a[103]; inline double jl(double x1,double x2,double y1,double y2,double z1,double z2) { return (x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(z1-z2)*(z1-z2); } int oyy() { freopen("warp.in","r",stdin);freopen("warp.out","w",stdout); n=read(); while(n!=-1) { for(int i=1;i<=n;i++) { a[i].x=read();a[i].y=read();a[i].z=read();a[i].r=read(); } a[0].x=read();a[0].y=read();a[0].z=read(); a[n+1].x=read();a[n+1].y=read();a[n+1].z=read(); a[0].r=a[n+1].r=0; for(int i=0;i<=n+1;i++) for(int j=0;j<=n+1;j++) if(i!=j) { double temp=sqrt(jl(a[i].x,a[j].x,a[i].y,a[j].y,a[i].z,a[j].z))-a[i].r-a[j].r; mp[i][j]=temp>0?temp:0; } for(int k=0;k<=n+1;k++) for(int i=0;i<=n+1;i++) for(int j=0;j<=n+1;j++) if(k!=i&&k!=j&&i!=j) mp[i][j]=min(mp[i][j],mp[i][k]+mp[k][j]); double temp=mp[0][n+1]*10; int ans=floor(temp+0.5); cout<<ans<<endl; n=read(); } return 0; }
T4鸽了,等我学会最短路+记录路径再做