题
OvO http://codeforces.com/contest/838/problem/E
(IndiaHacks 2nd Elimination 2017 (unofficial, unrated mirror, ICPC rules) - E)
解
dp[i][j][k]表示左端点为i,右端点为j这个区间(如果i>j,就是(i~n),(1,j)),状态为k(k=0说明i这端可以接,k=1说明j这端可以接)
枚举长度,
那么对于dp[i][j][0],可以从dp[i-1][j][0]接上i-1与i这一段,或者dp[i-1][j][1]接上j与i这一段
对于状态为1的时候,类似可以得到答案
(思路来自KOKOZDRA的提交)
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <iomanip>
using namespace std;
typedef long double ld;
const int M=2544;
struct node
{
int x,y;
} p[M];
ld dis(node a,node b)
{
ld dx=a.x-b.x;
ld dy=a.y-b.y;
return sqrt(dx*dx+dy*dy);
}
int n;
ld mp[M][M];
ld dp[M][M][2],ans; //dp[i][j][k] k==0 means i is ok to connect, otherwise j
void init()
{
int i,j,pi,qi;
for(i=1;i<=n;i++)
for(j=i;j<=n;j++)
mp[i][j]=mp[j][i]=dis(p[i],p[j]);
ans=0;
}
int trf(int x)
{
if(x>n) return x-n;
if(x<1) return x+n;
return x;
}
void solve()
{
memset(dp,0,sizeof(dp));
int i,j,ti,tj;
ld tmp;
for(ti=2;ti<=n;ti++) //length
for(tj=1;tj<=n;tj++)
{
i=tj; j=trf(tj+ti-1); //string of ([i~j] (if(j<i) j+=n))
dp[i][j][0]=max(dp[trf(i+1)][j][0]+mp[trf(i+1)][i],dp[trf(i+1)][j][1]+mp[j][i]);
dp[i][j][1]=max(dp[i][trf(j-1)][0]+mp[i][j],dp[i][trf(j-1)][1]+mp[trf(j-1)][j]);
ans=max(ans,max(dp[i][j][0],dp[i][j][1]));
}
}
int main()
{
int i,j,it,qi,pi;
ld tmp,mx;
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%d%d",&p[i].x,&p[i].y);
init();
solve();
// printf("%.10Lf
",ans);
cout<<fixed<<setprecision(10)<<ans<<endl;
return 0;
}
/*
7
0 0
0 1000
1 1000
1000 999
1001 1
1000 0
1 -1
*/
赛时真的贼痛苦、太菜
