zoukankan      html  css  js  c++  java
  • day30

    今日内容:

    *网络通讯协议

    1,什么是网络编程?

    网络就是由多台计算机通过网线或其他媒介相互链接组成

    编写基于网络的应用程序的过程称之为网络编程

    2,为什么要学习网络编程

    ​       如果想要与其他计算机一起完成某些任务,就必须让你的计算机和其他计算机能够互相传递数据

    ​      学习网络编程就是要学习利用网络来与另一台计算机相互传输数据,开发出支持网络通讯的应用程序,

    一:C/S构架

    学习网络编程就是要通过网络来访问另一台计算机的数据,这样必须需要至少两台计算机,一台计算机放着分享的数据程序,另一台计算机上运行上运行访问数据的程序

    把提供数据的一方称之为服务器:Server

    把访问数据的一方称之为客户端:Client

    电脑上要看视频就需要装看视频的程序.例如腾讯视频,它就是客户端程序,腾讯公司的机房里运行着腾讯视频的服务器程序,所以它也是C/S构架的程序

    另外浏览器也可以访问服务器上的网页数据,称之为B/S,其本质上也是C/S只不过客户端是浏览器

    二:网络通讯的基本要素

    两台计算机要通讯,必须具备两个要素

    1,物理介质:网线,无线电,光纤

    2,通讯协议

    1,物理连接的介质

    2,通讯协议

    协议    就是标准,大家要遵循相同的标准才能正常交流通讯

    两个人要交流,必须说双方都能理解的语言,想象一下一个说新疆话的人打电话给说闽南语的人,基本说了等于没说 双方都能理解的语言就是,就是标准,就是协议

    OSI七层模型

    1.什么是OSI

    Open System Interconnection Reference Model,开放式系统互联通信参考模型,缩写为OSI,是由国际标准组织推出的,其实就是一大堆协议,OSI把整个通讯过程划分为七层,简称OSI七层模型

    上图中最右边就是完整的七层模型,是最完整的通讯模型,虽然很详尽,但是整个通讯流程的复杂度较高,后期为了降低学习难度,将其进行了简化,于是又了中间的五层,和左边的四层

    <p >其中应用层,表示层和会话层都是属于应用程序层的,是一个整体,故将其合并为应用层,由此得到中间的五层,这是我们学习的重点!

    总结:OSI就是相当于计算机界的通用语言,只要按照OSI规定的标准来通讯,就能够与全世界任何一台所有计算机通讯

    那这OSI种的七层到底是干什么的呢?

    一:物理层

    物理层的由来,在通讯的基本要素一节已经讨论过了,两台原本相互独立的计算机,想要通讯,必须建立物理连接,连接的方式多种多样,包括电缆,光缆,无线电等;

    物理层的功能:基于电子器件发送电流信号,根据电流的高低可以对应到数字0和1,也就是二进制数据

    二.数据链路层

    数据链路层的由来:单纯的电信号0和1没有任何意义,必须规定电信号多少位一组,每组什么意思

    以太网协议:

    以太网协议(Ethernet)工作在数据链路层,其规定了电信号分组方式,以及一组电信号应该包含哪些内容

    ethernet规定如下:

    • 一组电信号构成一个数据包,叫做‘帧’

    • 每一数据帧分成:报头head和数据data两部分

    head包含:(固定18个字节)

    • 发送者/源地址,6个字节

    • 接收者/目标地址,6个字节

    • 数据类型(标签+以太类型),6个字节

    data包含:(最短46字节,最长1500字节)

    • 数据包的具体内容

    head长度+data长度=最短64字节,最长1518字节,超过最大限制就分片发送

    mac地址:

    head中包含的源和目标地址指的是什么地址呢?

    ethernet规定接入internet的设备都必须具备网卡,发送端和接收端的地址便是指网卡的地址,即mac地址

    mac地址:每块网卡出厂时都被烧制上一个世界唯一的mac地址,长度为48位2进制,通常由12位16进制数表示(前六位是厂商编号,后六位是流水线号)

    有了mac地址,同一网络内的两台主机就可以通信了,这时两台计算机要进行数据交流就要通过交换机(广播)来进行交流

    交换机不仅负责让网络中的计算机能够互相通信,还要优化网络传输,

    如何优化呢?

    当pc1想要与pc2通讯前

    1.需要知道pc2的MAC地址,所以必须先将这个信息广播给所有的计算机,

    2.这个信息必须先交给交换机,再由交换机广播出去,

    3.pc2收到消息后发现目标MAC是自己,就回复数据给发送方,

    4.而回复也必须先交给交换机,此时交换机就会记录pc2的MAC地址与网口号的对应关系存到自己的缓存中,

    5.下一次在要给pc2发数据时从缓存中查找pc2的MAC地址,

    6.如果找到了就直接单独给pc2发送,不在需要广播,

    7.如果没有则重复之前的广播过程

    这一优化功能称之为自动学习功能

    第一次链接某计算机时  必须广播获取MAC地址

    只要链接过一次 MAC地址就被交换机记录下了下一次就不用广播了

    三.网络层

    1.以太网通讯存在的问题:

    世界范围的互联网是由一个个彼此隔离的小的局域网组成的,如果所有的计算机都采用以太网的广播方式来寻找其他计算机,那么一台机器发送的包全世界都会收到,这就不仅仅是效率低的问题了,这会是一种灾难,(广播风暴 就是这么产生的)

    结论:必须找出一种方法来区分哪些计算机属于同一广播域,哪些不是,如果是就采用广播的方式发送,如果不是,就采用路由的方式(向不同广播域/子网分发数据包),mac地址是无法区分的,它只跟厂商有关;

    网络层功能:引入一套新的地址用来区分不同的广播域/子网,这套地址即网络地址,网络地址到底长什么样,又是如何区分子网的?

    3.IP协议

    3.1 IP地址(重点)

    • ip协议定义的地址称之为ip地址,广泛采用的v4版本即ipv4,它规定网络地址由32位2进制表示

    • 范围0.0.0.0-255.255.255.255

    • 一个ip地址通常写成四段十进制数,例:192.168.10.1

    • 网络号:标识子网

    • 主机号:标识主机

    IP地址的分类:

    ​ A类保留给政府机构

    ​ 1.0.0.0---126.0.0.0

    ** B类分配给中等规模公司**

    ​ 128.0.0.0---191.255.0.0

    ​ C类分配给任何需要的人

    ​ 192.168.0.1 - 192.168.255.254

    ​ D类用于组播

    ​ E类用于实验

    我们的电脑ip通常都是C类的,以192.168开头,正因为C类任何人都可以用

    3.2   总结一下,IP协议的作用主要有两个,一个是为每一台计算机分配IP地址另一个是确定哪些地址在同一个子网络

    3.3 IP数据包(了解)

    ip数据包也分为head和data部分,无须为ip包定义单独的栏位,直接放入以太网包的data部分

    head:长度为20到60字节

    data:最长为65,515字节。

    而以太网数据包的”数据”部分,最长只有1500字节。因此,如果IP数据包超过了1500字节,它就需要分割成几个以太网数据帧,分开发送了。

    总结:ARP通过广播的方式来获取MAC地址, 不在同一子网时   ARP得到的时对方网关的MAC地址,数据到达对方网关后,由网关根据IP交给对应的主机,当然对方网关获取主机MAC也是通过ARP

    ps:路由器 交换机都可以称之为网关!

    四.传输层(重点)

    传输层的由来:

    ​ 通过物理层简历链接通道

    ​ 通过数据链路层的MAC,可以定位到某个局域网中的某台主机,

    ​ 通过网络层的IP地址,子网掩码,可以定位到全球范围某一局域网下的某台主机

    那么问题来了:

    ​ 一台计算机上是不可能只运行一个应用程序的,比如同时登陆qq和微信,那接收到的数据到底是交给微信还是qq呢?

    答案就是:端口号,端口是需要联网的应用程序与网卡关联的编号

    传输层功能:建立端口到端口的通信

    补充:端口范围0-65535,0-1023为系统占用端口

    CP与UDP是工作在传输层的协议:

    TCP协议

    可靠传输,TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。

    TCP之所以可靠,是因为在传输数据前需要三次握手确认建立链接

    三次握手:

    三次握手的过程实际上实在确认我发的你能收到,你发的我也能收到,从而保证数据传输的的可靠性,

    链接是一个虚拟的概念,不实际存在,只要三次握手成功即表示连接建立成功!

    问题是三次握手时的确能保障数据传输是可靠的,那么握手后的数据要如何保证传输成功呢?

    TCP协议要求在发送数据后,必须接收到对方的回复信息才能确认数据成功发送,如果一段时内没有收到回复信息,会自动重新发送,如果重试的次数过多则表示链接可能已经中断!

    四次挥手:

    四次挥手的目的是保证双方的数据传输已经全部完成,同样是为了保证数据的完整性

    总结

    其优点很明显:能够保证数据传输是完整的

    缺点:由于每次都需要传输确认信息,导致传输效率降低

    场景:多用于必须保证数据完整性的场景,例如文本信息,支付信息等!

    UDP协议

    不可靠传输,”报头”部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。

    UDP协议采取的方式与TCP完全不同,其根本不关心,对方是否收到数据,甚至不关心,对方的地址是否有效,只要将数据报发送到网络,便什么都不管了!

    总结

    优点:由于不需要传输确认信息,所以传输效率高于TCP协议

    缺点:传输数据可能不完整

    场景:视频聊天,语音聊天等,不要求数据完整性,但是对传输速度要求较高

    CP与UDP是工作在传输层的协议:

    TCP协议

    可靠传输,TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。

    TCP之所以可靠,是因为在传输数据前需要三次握手确认建立链接

    三次握手:

    三次握手的过程实际上实在确认我发的你能收到,你发的我也能收到,从而保证数据传输的的可靠性,

    链接是一个虚拟的概念,不实际存在,只要三次握手成功即表示连接建立成功!

    问题是三次握手时的确能保障数据传输是可靠的,那么握手后的数据要如何保证传输成功呢?

    TCP协议要求在发送数据后,必须接收到对方的回复信息才能确认数据成功发送,如果一段时内没有收到回复信息,会自动重新发送,如果重试的次数过多则表示链接可能已经中断!

    四次挥手:

    四次挥手的目的是保证双方的数据传输已经全部完成,同样是为了保证数据的完整性

    总结

    其优点很明显:能够保证数据传输是完整的

    缺点:由于每次都需要传输确认信息,导致传输效率降低

    场景:多用于必须保证数据完整性的场景,例如文本信息,支付信息等!

    UDP协议

    不可靠传输,”报头”部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。

    UDP协议采取的方式与TCP完全不同,其根本不关心,对方是否收到数据,甚至不关心,对方的地址是否有效,只要将数据报发送到网络,便什么都不管了!

    总结

    优点:由于不需要传输确认信息,所以传输效率高于TCP协议

    缺点:传输数据可能不完整

    场景:视频聊天,语音聊天等,不要求数据完整性,但是对传输速度要求较高

  • 相关阅读:
    顺序表与链表
    Python SQL相关操作
    Python 数据分析练习1
    Python 操作MySQL数据库
    Python 乘法口诀表
    Python 导出数据from Mysql
    Python subplot 绘画
    Shell 自定义函数
    Shell 双括号概述
    Shell for、while循环
  • 原文地址:https://www.cnblogs.com/Fzhiyuan/p/10933808.html
Copyright © 2011-2022 走看看