pick定理:一个计算点阵中顶点在格点上的多边形面积公式:S=a+b÷2-1,其中a表示多边形内部的点数,b表示多边形边界上的点数,s表示多边形的面积。
思路:http://blog.csdn.net/magicnumber/article/details/6192242
#include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> #define LL long long int using namespace std; const int MAXN = 1000100; const LL dx[] = { 0, -1, -1, -1, 0, 1, 1, 1 }; const LL dy[] = { 1, 1, 0, -1, -1, -1, 0, 1 }; struct Point { LL x, y; Point( LL x = 0, LL y = 0 ):x(x), y(y) { } }; typedef Point Vector; Vector operator+( Vector A, Vector B ) //向量加 { return Vector( A.x + B.x, A.y + B.y ); } Vector operator-( Vector A, Vector B ) //向量减 { return Vector( A.x - B.x, A.y - B.y ); } Vector operator*( Vector A, double p ) //向量数乘 { return Vector( A.x * p, A.y * p ); } Vector operator/( Vector A, double p ) //向量数除 { return Vector( A.x / p, A.y / p ); } char str[MAXN]; Point P[MAXN]; LL Cross( Vector A, Vector B ) //向量叉积 { return A.x * B.y - A.y * B.x; } LL PolygonArea( Point *p, int n ) //多边形有向面积 { LL area = 0; for ( int i = 1; i < n - 1; ++i ) area += Cross( p[i] - p[0], p[i + 1] - p[0] ); return area; } int main() { while ( scanf( "%s", str ) == 1 ) { int n = strlen(str); Point st = Point(0, 0); for ( int i = 0; i < n; ++i ) { st.x += dx[ str[i] - '0' ]; st.y += dy[ str[i] - '0' ]; P[i] = st; } LL s = PolygonArea( P, n ); if ( s < 0 ) s = -s; printf("%I64d ", (s + n) / 2 + 1 ); } return 0; }