zoukankan      html  css  js  c++  java
  • ZOJ 3717 Balloon ( TLE )

    正解2-SAT。

    我用DLX想搜一搜的,结果TLE了……

    没什么遗憾,最起码我尝试过了。

    扔个代码留作纪念。

    #include <cstdio>
    #include <cstring>
    #include <cstdlib>
    #include <cmath>
    #include <algorithm>
    
    using namespace std;
    
    const int INF = 1 << 30;
    const int MAXN = 450;
    const double eps = 1e-9;
    
    struct Point
    {
        double x, y, z;
        Point( double x = 0, double y = 0, double z = 0 ):x(x), y(y), z(z){ }
        void readPoint()
        {
            scanf( "%lf%lf%lf", &x, &y, &z );
            return;
        }
    };
    
    bool mx[MAXN][800];    //01矩阵
    int C[MAXN*800], cnt[800];
    int U[MAXN*800], D[MAXN*800];
    int L[MAXN*800], R[MAXN*800];
    int head;
    int maxr, maxc;
    Point P[MAXN];
    int N;
    
    int dcmp( double a )
    {
        if ( fabs(a) < eps ) return 0;
        return a < 0 ? -1 : 1;
    }
    
    double Dis( Point a, Point b )
    {
        return sqrt( ( a.x - b.x )*( a.x - b.x ) + ( a.y - b.y )*( a.y - b.y ) + ( a.z - b.z )*( a.z - b.z ) );
    }
    
    void Remove( int c )
    {
        int i, j;
        L[ R[c] ] = L[c];
        R[ L[c] ] = R[c];
        for ( i = D[c]; i != c; i = D[i] )
        {
            for ( j = R[i]; j != i; j = R[j] )
            {
                U[ D[j] ] = U[j];
                D[ U[j] ] = D[j];
                --cnt[ C[j] ];
            }
        }
        return;
    }
    
    void Resume( int c )
    {
        int i, j;
        R[ L[c] ] = c;
        L[ R[c] ] = c;
        for ( i = D[c]; i != c; i = D[i] )
        {
            for ( j = R[i]; j != i; j = R[j] )
            {
                U[ D[j] ] = j;
                D[ U[j] ] = j;
                ++cnt[ C[j] ];
            }
        }
        return;
    }
    
    bool DFS( int cur )
    {
        int i, j, c, minv;
    
        if ( cur > N ) return false;
        if ( R[head] == head )
        {
            if ( cur == N )
                return true;
            return false;
        }
    
        minv = INF;
        for ( i = R[head]; i != head; i = R[i] )
        {
            if ( cnt[i] < minv )
            {
                minv = cnt[i];
                c = i;
            }
        }
    
        Remove(c);
        for ( i = D[c]; i != c; i = D[i] )
        {
            for( j = R[i]; j != i; j = R[j] )
                Remove( C[j] );
    
            if ( DFS( cur + 1 ) ) return true;
    
            for( j = R[i]; j != i; j = R[j] )
                Resume( C[j] );
        }
    
        Resume(c);
        return false;
    }
    
    bool build()
    {
        int i, j, cur, pre, first;
        head = 0;
        for ( i = 0; i < maxc; ++i )
        {
            R[i] = i + 1;
            L[i + 1] = i;
        }
        R[ maxc ] = 0;
        L[0] = maxc;
    
        //列双向链表
        for ( j = 1; j <= maxc; ++j )
        {
            pre = j;
            cnt[j] = 0;
            for ( i = 1; i <= maxr; ++i )
            {
                if ( mx[i][j] )
                {
                    ++cnt[j];
                    cur = i * maxc + j;  //当前节点的编号
                    C[cur] = j;          //当前节点所在列
                    D[pre] = cur;
                    U[cur] = pre;
                    pre = cur;
                }
            }
            U[j] = pre;
            D[pre] = j;
            if ( !cnt[j] ) return false; //一定无解
        }
    
        //行双向链表
        for ( i = 1; i <= maxr; ++i )
        {
            pre = first = -1;
            for ( j = 1; j <= maxc; ++j )
            {
                if( mx[i][j] )
                {
                    cur = i * maxc + j;
                    if ( pre == -1 ) first = cur;
                    else
                    {
                        R[pre] = cur;
                        L[cur] = pre;
                    }
                    pre = cur;
                }
            }
            if ( first != -1 )
            {
                R[pre] = first;
                L[first] = pre;
            }
        }
        return true;
    }
    
    /**************以上DLX模板*****************/
    
    void show()
    {
        for ( int i = 0; i <= maxr; ++i )
        {
            for ( int j = 0; j <= maxc; ++j )
                printf( "%d", mx[i][j] );
            puts("");
        }
        puts("---------");
        return;
    }
    
    //得到该情况下的01矩阵
    void init( double R )
    {
        memset( mx, false, sizeof(mx) );
    
        for ( int i = 1; i <= maxr; ++i )
        {
            mx[i][i] = true;
            if ( i % 2 )
            {
                //printf("ii %d %d
    ", i, i + 1);
                mx[i][N + N + i/2+1] = true;
                mx[i + 1][N + N + i/2+1] = true;
            }
            for ( int j = 1; j <= maxr; ++j )
            {
                //printf("i=%d j=%d
    ", i, j );
                if ( dcmp( Dis( P[i], P[j] ) - 2.0 * R ) < 0 )
                    mx[j][i] = true;
            }
        }
        //show();
        return;
    }
    
    bool ok( double mid )
    {
        init( mid );
        if ( build() == false ) return false;
        if ( DFS( 0 ) == false ) return false;
        return true;
    }
    
    double solved()
    {
        double l = 0;
        double r = Dis( Point(0, 0, 0), Point( 10000, 10000, 10000 ) );
        double ans;
        while ( dcmp( r - l ) > 0 )
        {
            double mid = ( l + r ) / 2.0;
            //printf( "mid = %.6f
    ", mid );
            if ( ok( mid ) )
            {
                l = mid;
                ans = mid;
            }
            else r = mid;
        }
        return ans;
    }
    
    int main()
    {
        //freopen( "in.txt", "r", stdin );
        //freopen( "out.txt", "w", stdout );
        while ( scanf( "%d", &N ) == 1 )
        {
            maxr = 0;
            for ( int i = 0; i < N; ++i )
            {
                P[++maxr].readPoint();
                P[++maxr].readPoint();
            }
            maxc = maxr + N;
            double ans=(int)(solved()*1000+0.5+eps)/1000.0;
            if ( !ok(ans) ) ans -= 0.001;
            printf( "%.3f
    ", ans );
        }
        return 0;
    }
  • 相关阅读:
    常见常用的CSS
    Js删除数组函数
    使用CSS让多出来的字变为省略号
    CSS缩写的样式
    mac下安装nginx
    ubuntu下程序员常用命令大全
    vue.js实现瀑布流之vue-waterfall-easy
    vue.js常见的报错信息及其解决方法的记录
    laravel5.4生成验证码
    java算法之超级丑数
  • 原文地址:https://www.cnblogs.com/GBRgbr/p/3269058.html
Copyright © 2011-2022 走看看