《训练指南》p.125
设f[n] = gcd(1, n) + gcd(2, n) + …… + gcd(n - 1, n);
则所求答案为S[n] = f[2]+f[3]+……+f[n];
求出f[n]即可递推求得S[n]:S[n] = S[n - 1] + f[n];
所有gcd(x, n)的值都是n的约数,按照约数进行分类,令g(n, i)表示满足gcd(x, n) = i && x < n 的正整数x的个数,则f[n] = sum{ i * g(n, i) | n % i = 0 };
gcd( x, n ) = i 的充要条件为:gcd( x / i, n / i ) = 1; 因此满足条件的x/i有phi(n/i)个,说明g(n, i) = phi( n/i );
如果依次计算f[n],枚举f[n]的约数的话效率太低
因此对于每个i枚举它的倍数n并更新f[n],时间复杂度与素数筛法同阶。
#include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> #define LL long long int using namespace std; const int MAXN = 4000100; LL phi[MAXN]; LL S[MAXN]; LL f[MAXN]; //筛法计算欧拉数 void phi_table( int n ) { for ( int i = 2; i < n; ++i ) phi[i] = 0; phi[1] = 1; for ( int i = 2; i < n; ++i ) if ( !phi[i] ) { for ( int j = i; j < n; j += i ) { if ( !phi[j] ) phi[j] = j; phi[j] = phi[j] / i * (i - 1); } } return; } int main() { phi_table( MAXN ); memset( f, 0, sizeof(f) ); for ( int i = 1; i < MAXN; ++i ) for ( int j = i * 2; j < MAXN; j += i ) f[j] += i * phi[j / i]; S[2] = f[2]; for ( int i = 3; i < MAXN; ++i ) S[i] = S[ i - 1 ] + f[i]; int n; while ( scanf( "%d", &n ), n ) { printf("%lld ", S[n] ); } return 0; }