zoukankan      html  css  js  c++  java
  • UVa 11426

    《训练指南》p.125

    设f[n] = gcd(1, n) + gcd(2, n) + …… + gcd(n - 1, n);

    则所求答案为S[n] = f[2]+f[3]+……+f[n];

    求出f[n]即可递推求得S[n]:S[n] = S[n - 1] + f[n];

    所有gcd(x, n)的值都是n的约数,按照约数进行分类,令g(n, i)表示满足gcd(x, n) = i && x < n 的正整数x的个数,则f[n] = sum{ i * g(n, i) | n % i = 0 };

    gcd( x, n ) = i 的充要条件为:gcd( x / i, n / i ) = 1; 因此满足条件的x/i有phi(n/i)个,说明g(n, i) = phi( n/i );

    如果依次计算f[n],枚举f[n]的约数的话效率太低

    因此对于每个i枚举它的倍数n并更新f[n],时间复杂度与素数筛法同阶。

    #include <cstdio>
    #include <cstring>
    #include <cstdlib>
    #include <algorithm>
    
    #define LL long long int
    
    using namespace std;
    
    const int MAXN = 4000100;
    
    LL phi[MAXN];
    LL S[MAXN];
    LL f[MAXN];
    
    //筛法计算欧拉数
    void phi_table( int n )
    {
        for ( int i = 2; i < n; ++i ) phi[i] = 0;
        phi[1] = 1;
        for ( int i = 2; i < n; ++i )
            if ( !phi[i] )
            {
                for ( int j = i; j < n; j += i )
                {
                    if ( !phi[j] )
                        phi[j] = j;
                    phi[j] = phi[j] / i * (i - 1);
                }
            }
        return;
    }
    
    int main()
    {
        phi_table( MAXN );
    
        memset( f, 0, sizeof(f) );
        for ( int i = 1; i < MAXN; ++i )
            for ( int j = i * 2; j < MAXN; j += i )
                f[j] += i * phi[j / i];
    
        S[2] = f[2];
        for ( int i = 3; i < MAXN; ++i )
            S[i] = S[ i - 1 ] + f[i];
    
        int n;
        while ( scanf( "%d", &n ), n )
        {
            printf("%lld
    ", S[n] );
        }
        return 0;
    }
  • 相关阅读:
    eclipse中注释模板的修改
    Oracle 解锁Record is locked by another user
    Oracle 解锁Record is locked by another user
    提高网站速度的最佳实践
    Tomcat中配置SSL
    CentOS QQ
    csshack
    文件contentType
    JavaScript实现Iframe自适应其加载的内容高度
    转timer
  • 原文地址:https://www.cnblogs.com/GBRgbr/p/3304376.html
Copyright © 2011-2022 走看看