空间异面直线的距离直接套模板。
求交点:求出两条直线的公共法向量,其中一条直线与法向量构成的平面 与 另一条直线 的交点即可。还是套模板o(╯□╰)o
1.不会有两条线平行的情况。
2.两条直线可能相交
#include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const double EPS = 1e-9; const int MAXN = 40; struct Point3 //空间点 { double x, y, z; Point3( double x=0, double y=0, double z=0 ): x(x), y(y), z(z) { } Point3( const Point3& a ) { x = a.x; y = a.y; z = a.z; return; } void showP() { printf("%f %f %f ", x, y, z); } Point3 operator+( Point3& rhs ) { return Point3( x+rhs.x, y+rhs.y, z+rhs.z ); } }; struct Line3 //空间直线 { Point3 a, b; }; struct plane3 //空间平面 { Point3 a, b, c; plane3() {} plane3( Point3 a, Point3 b, Point3 c ): a(a), b(b), c(c) { } void showPlane() { a.showP(); b.showP(); c.showP(); return; } }; double dcmp( double a ) { if ( fabs( a ) < EPS ) return 0; return a < 0 ? -1 : 1; } //三维叉积 Point3 Cross3( Point3 u, Point3 v ) { Point3 ret; ret.x = u.y * v.z - v.y * u.z; ret.y = u.z * v.x - u.x * v.z; ret.z = u.x * v.y - u.y * v.x; return ret; } //三维点积 double Dot3( Point3 u, Point3 v ) { return u.x * v.x + u.y * v.y + u.z * v.z; } //矢量差 Point3 Subt( Point3 u, Point3 v ) { Point3 ret; ret.x = u.x - v.x; ret.y = u.y - v.y; ret.z = u.z - v.z; return ret; } //两点距离 double TwoPointDistance( Point3 p1, Point3 p2 ) { return sqrt( (p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y) + (p1.z - p2.z)*(p1.z - p2.z) ); } //向量的模 double VectorLenth( Point3 p ) { return sqrt( p.x*p.x + p.y*p.y + p.z*p.z ); } //空间直线距离 double LineToLine( Line3 u, Line3 v, Point3& tmp ) { tmp = Cross3( Subt( u.a, u.b ), Subt( v.a, v.b ) ); return fabs( Dot3( Subt(u.a, v.a), tmp ) ) / VectorLenth(tmp); } //取平面法向量 Point3 pvec( plane3 s ) { return Cross3( Subt( s.a, s.b ), Subt( s.b, s.c ) ); } //空间平面与直线的交点 Point3 Intersection( Line3 l, plane3 s ) { Point3 ret = pvec(s); double t = ( ret.x*(s.a.x-l.a.x)+ret.y*(s.a.y-l.a.y)+ret.z*(s.a.z-l.a.z) )/( ret.x*(l.b.x-l.a.x)+ret.y*(l.b.y-l.a.y)+ret.z*(l.b.z-l.a.z) ); ret.x = l.a.x + ( l.b.x - l.a.x ) * t; ret.y = l.a.y + ( l.b.y - l.a.y ) * t; ret.z = l.a.z + ( l.b.z - l.a.z ) * t; return ret; } /************以上模板*************/ void solved( Line3 A, Line3 B ) { Point3 normal; double dis = LineToLine( A, B, normal ); printf( "%.6f ", dis ); plane3 pla; pla = plane3( A.a, A.b, A.a + normal ); Point3 u = Intersection( B, pla ); pla = plane3( B.a, B.b, B.a + normal ); Point3 v = Intersection( A, pla ); printf("%.6f %.6f %.6f %.6f %.6f %.6f ", v.x, v.y, v.z, u.x, u.y, u.z ); return; } int main() { int T; scanf( "%d", &T ); while ( T-- ) { Line3 A, B; scanf("%lf%lf%lf", &A.a.x, &A.a.y, &A.a.z ); scanf("%lf%lf%lf", &A.b.x, &A.b.y, &A.b.z ); scanf("%lf%lf%lf", &B.a.x, &B.a.y, &B.a.z ); scanf("%lf%lf%lf", &B.b.x, &B.b.y, &B.b.z ); solved( A, B ); } return 0; }