zoukankan      html  css  js  c++  java
  • GDOI2021游记

    I.考前抱佛jio记

    Talk is cheap show me the code.

    I.I 字符串系列

    I.I.I Hash

    想必是不用说了。

    I.I.II 前缀函数与 Knuth-Morris-Pratt 算法

    I.I.II.I 计算前缀函数

    算法1:枚举

    复杂度(Theta(n^3))

    vector<int> prefix_function(char *s){
        int n = strlen(s+1);
        vector<int> pi(n);
        for(int i=1; i<=n; i++){
            for(int j=i; j>=0; j--){
                bool flag = 1;
                for(int k=1; k<=j; k++){
                    if(str[k] != str[i-k+1]){
                        flag = 0;
                        break;
                    }
                }
                if(flag){
                    pi[i] = j;
                    break;
                }
            }
        }
        return pi;
    }
    
    优化1:相邻前缀函数至多增加1

    复杂度(Theta(n^2))

    vector<int> prefix_function(char *s){
        int n = str(s+1);
        vector<int> pi(n);
        for(int i=1; i<=n; i++){
            for(int j=pi[i-1]+1; j>=0; j--){
                bool flag = 1;
                for(int k=1; k<=j; k++){
                    if(str[k] != str[i-k+1]){
                        flag = 0;
                        break;
                    }
                }
                if(flag){
                    pi[i] = j;
                    break;
                }
            }
        }
        return pi;
    }
    
    优化2:失配指针

    复杂度(Theta(n))

    vector<int> prefix_function(char *s){
        int n = str(s+1);
        vector<int> pi(n);
        for(int i=1; i<=n; i++){
            int j = pi[i-1];
            while(j and s[i] != s[j+1]) j = pi[j-1];
            if(s[i] == s[j+1]) j ++;
            pi[i] = j;
        }
        return pi;
    }
    

    I.I.II.II Knuth-Morris-Pratt algorithm

    复杂度(Theta(n+m))

    vector<int> Knuth_Morris_Pratt_algorithm(char *s, char *p){
        int n = str(s+1), m = str(p+1);
        vector<int> pos, nxt;
        nxt = prefix_function(char *p);
        for(int i=1, j=0; i<=n; i++){
            while(j and s[i] != p[j+1]) j = nxt[j];
            if(p[j+1] == s[i]) j ++;
            if(j == m) pos.push_back(i-j+1);
        }
        return pos;
    }
    

    (字符串系列未完待续,咕咕咕~)

    I.II 数学系列

    I.II.I 从快速幂开始

    int qpow(int x, int y){
        int cnt = 1, basic = x;
        while(y){
            if(y&1) cnt = cnt*basic;
            basic = basic*basic, y >>= 1;
        }
        return cnt;
    }
    
    矩阵类
    struct Matrix
    {
        int a[maxn][maxn], n;
        void clear(int x)
        {
            n = x;
            for (int i = 1; i <= n; i++)
                a[i][i] = 1;
        }
        void init(int x)
        {
            n = x;
            for (int i = 1; i <= n; i++)
                for (int j = 1; j <= n; j++)
                    a[i][j] = 0;
        }
        Matrix operator*(const Matrix &x) const
        {
            Matrix c;
            c.init(n);
            for (int k = 1; k <= n; k++)
                for (int i = 1; i <= n; i++)
                    for (int j = 1; j <= n; j++)
                        (c.a[i][j] += a[i][k] * x.a[k][j] % mod) %= mod;
            return c;
        }
        void debug()
        {
            for (int i = 1; i <= n; i++)
            {
                for (int j = 1; j <= n; j++)
                    cout << a[i][j] << " ";
                cout << endl;
            }
        }
    };
    

    I.II.II 从gcd开始

    int gcd(int x, int y){
        if(y == 0) return x;
        return gcd(y, x%y);
    }
    

    I.II.III 扩展欧几里得EX-gcd

    定理:裴蜀定理

    [ax+by=gcd(a,b) ]

    简单推导:

    [ax+by=(a,b)=(b,a\%b)=bx'+(a\%b)y'=bx'+(a-bcdotleftlfloor dfrac{a}{b} ight floor)y'\ herefore egin{cases}x=y'\y=x'-leftlfloorfrac{a}{b} ight floor y'end{cases} ]

  • 相关阅读:
    LeetCode 227. Basic Calculator II
    LeetCode 224. Basic Calculator
    LeetCode 103. Binary Tree Zigzag Level Order Traversal
    LeetCode 102. Binary Tree Level Order Traversal
    LeetCode 106. Construct Binary Tree from Inorder and Postorder Traversal
    LeetCode 105. Construct Binary Tree from Preorder and Inorder Traversal
    LeetCode 169. Majority Element
    LeetCode 145. Binary Tree Postorder Traversal
    LeetCode 94. Binary Tree Inorder Traversal
    LeetCode 144. Binary Tree Preorder Traversal
  • 原文地址:https://www.cnblogs.com/GDOI2018/p/14638944.html
Copyright © 2011-2022 走看看