zoukankan      html  css  js  c++  java
  • 花店橱窗布置(洛谷:P1854)

    花店橱窗布置

    题目描述:

    某花店现有F束花,每一束花的品种都不一样,同时至少有同样数量的花瓶,被按顺序摆成一行,花瓶的位置是固定的,从左到右按1到V顺序编号,V是花瓶的数目。花束可以移动,并且每束花用1到F的整数标识。如果I < J,则花束I必须放在花束J左边的花瓶中。例如,假设杜鹃花的标识数为1,秋海棠的标识数为2,康乃馨的标识数为3,所有花束在放入花瓶时必须保持其标识数的顺序,即杜鹃花必须放在秋海棠左边的花瓶中,秋海棠必须放在康乃馨左边的花瓶中。如果花瓶的数目大于花束的数目,则多余的花瓶必须空,即每个花瓶只能放一束花。

    每个花瓶的形状和颜色也不相同,因此,当各个花瓶中放入不同的花束时,会产生不同的美学效果,并以美学值(一个整数)来表示,空置花瓶的美学值为0。在上述的例子中,花瓶与花束的不同搭配所具有的美学值,可以用如下的表格来表示:

    花瓶1 花瓶2 花瓶3 花瓶4 花瓶5

    杜鹃花 7 23 -5 -24 16

    秋海棠 5 21 -4 10 23

    康乃馨 -21 5 -4 -20 20

    根据表格,杜鹃花放在花瓶2中,会显得非常好看,但若放在花瓶4中,则显得很难看。

    为了取得最佳的美学效果,必须在保持花束顺序的前提下,使花的摆放取得最大的美学值,如果具有最大美学值的摆放方式不止一种,则输出任何一种方案即可。

    输入输出格式

    输入格式:

    输入文件的第一行是两个整数F和V,分别为花束数和花瓶数(1≤F≤100,F≤V≤100)。接下来是矩阵Aij,它有I行,每行J个整数,Aij表示花束I摆放在花瓶J中的美学值。

    输出格式:

    输出文件的第一行是一个整数,为最大的美学值;接下来有F行,每行两个数,为那束花放入那个花瓶的编号。

    解题思路:

    题意就不多说了,进入正题:

    首先,我们要考虑的是如何描述状态,这样就会出现两种描述方法:

    1.第i束花放在第j个花瓶的最大值

    2.第i束花放不放(放和不放中取一个最大值)在第j个花瓶的最大值

    很明显,光从状态的描述就可以看出第2种方案的时间复杂度要低于第1种方案 (毕竟第2种方案只用考虑两种情况)接下来,我们来找子问题;

    我们用一个二维数组 f[i][j] 来表示第i束花放不放在第j个花瓶的最大值,此时,它出现了两个子问题:

    1.不放:

    第j个花瓶不放花,那么这个状态可以描述为:f[i][j]=f[i][j-1];

    2.放

    第j个花瓶放花,那么就要加上第i朵花放在第j个花瓶的美学值:f[i][j]=f[i-1][j-1] (题目要求一定要放在前面的花瓶) +a[i][j] (a[i][j]是美学值)

    下面呈上代码:

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 const int maxn=105;
     4 int f[maxn][maxn];
     5 int n,m;
     6 int cost[maxn][maxn];
     7 struct node
     8 {
     9     int a[maxn];
    10     int tail;
    11 }way[maxn][maxn];//路径
    12 int main()
    13 {
    14     memset(f,-127,sizeof(f));//注意初始化(数组定成无穷小)
    15     cin>>n>>m;
    16     for(int i=1;i<=n;i++)
    17        for(int j=1;j<=m;j++)
    18           cin>>cost[i][j];
    19     for(int i=0;i<=m;i++)//注意初始化*2
    20        f[0][i]=0;
    21     for(int i=1;i<=n;i++)
    22        for(int j=i;j<=m;j++)
    23        {
    24            if(f[i-1][j-1]+cost[i][j]>f[i][j-1])//状态转移
    25            {
    26               way[i][j]=way[i-1][j-1];
    27               way[i][j].a[++way[i][j].tail]=j;//记录路径
    28               f[i][j]=f[i-1][j-1]+cost[i][j];//放在第j个花瓶的情况
    29            }
    30            else//状态转移*2
    31            {
    32               way[i][j]=way[i][j-1];//记录路径
    33               f[i][j]=f[i][j-1];//不放在第j个花瓶的情况
    34            }
    35        }
    36     cout<<f[n][m]<<endl;
    37     for(int i=1;i<=way[n][m].tail;i++)
    38         cout<<way[n][m].a[i]<<" ";//打印路径
    39     return 0;
    40 }
  • 相关阅读:
    P1631-序列合并
    P1484-种树
    17.树的子结构(python)
    16.合并两个排序的链表(python)
    反转链表
    链表中倒数第k个节点(python)
    调整数组顺序使奇数位于偶数前面(python)
    Spark--wordcount(词频降序)
    数值的整数次方
    二进制中1的个数(python)
  • 原文地址:https://www.cnblogs.com/GDOI2018/p/9009139.html
Copyright © 2011-2022 走看看