Description
Edward has an array A with N integers. He defines the beauty of an array as the summation of all distinct integers in the array. Now Edward wants to know the summation of the beauty of all contiguous subarray of the array A.
Input
There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:
The first line contains an integer N (1 <= N <= 100000), which indicates the size of the array. The next line contains N positive integers separated by spaces. Every integer is no larger than 1000000.
Output
For each case, print the answer in one line.
Sample Input
3 5 1 2 3 4 5 3 2 3 3 4 2 3 3 2
Sample Output
105 21 38
题意:
定义Beauty数是一个序列里所有不相同的数的和,求一个序列所有字序列的Beauty和
题解:
按先后顺序将每个元素加入队列 然后计算
例:如果array【1,2,3】
1: 1 dp = 1;
2: 1 2
2 dp = 1+2*2;
3: 1 2 3
2 3
3 dp = 5+3*3;
一个不错的解释:
如果要求的是一段序列中连续子序列的个数,那么如果定义d[i]为以i结尾的连续子序列的个数,d[i]=d[i-1]+1; 我们定义d[i]为以i结尾的连续子序列的和,那么如果不重复d[i]=d[i-1]+a*i; ,如果重复的话,假设1 2 3 4 5 6 7。。。。。i,如果在第j位,那么(i i-1),(i,i-2),(i,i-3)。。。。(i,j+1)这些连续子序列的值可以加上a的值; (i,j),(i,j-1),(i,j-2),(i,1),这些值都会包含重复的i,j位置上的值,因为只需要算一次,所以不需要给这些以i 结尾的子序列加上a,这些子序列的个数,总共有j个,所以我们只需要用一个数组A标记上A[a]=i;那么d[i]=d[i-1]+a+(i-1-A[a])*a; 如果a之前没有出现过,那么A[a]等于0;如果a之前出现过,减去包含重复值的子序列的个数,也就是A[a]。
代码:
#include <bits/stdc++.h> #include <iostream> #include <cstdio> #include <algorithm> #include <cmath> #include <cstring> #include <vector> #include <map> #include <set> #include <bitset> #include <queue> #include <deque> #include <stack> #include <iomanip> #include <cstdlib> #include <string> using namespace std; #define is_lower(c) (c>='a' && c<='z') #define is_upper(c) (c>='A' && c<='Z') #define is_alpha(c) (is_lower(c) || is_upper(c)) #define is_digit(c) (c>='0' && c<='9') #define min(a,b) ((a)<(b)?(a):(b)) #define max(a,b) ((a)>(b)?(a):(b)) #define IO ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); #define For(i,a,b) for(int i = a; i <= b; i++) typedef long long ll; typedef unsigned long long ull; typedef pair<int,int> pii; typedef pair<ll,ll> pll; typedef vector<int> vi; const ll inf=0x3f3f3f3f; const double EPS=1e-10; const ll inf_ll=(ll)1e18; const ll maxn=100005LL; const ll mod=1000000007LL; const int N = 1000000+5; int ans [N];int main() { IO int T; cin>>T; while(T--) { int n; memset(ans,0,sizeof(ans)); cin>>n; int m = 0; ll res = 0,dp = 0; For(i,1,n){ int x; cin>>x; dp += x*(i-ans[x]); res += dp; ans[x] = i; } cout<<res<<endl; } return 0; }