zoukankan      html  css  js  c++  java
  • 最短路-Floyd

    简介:

      算法的特点: 
      弗洛伊德算法是解决任意两点间的最短路径的一种算法,可以正确处理有向图或有向图或负权(但不可存在负权回路)的最短路径问题,同时也被用于计算有向图的传递闭 包。

    算法思想:

    通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入两个矩阵,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离。矩阵P中的元素b[i][j],表示顶点i到顶点j经过了b[i][j]记录的值所表示的顶点。

    假设图G中顶点个数为N,则需要对矩阵D和矩阵P进行N次更新。初始时,矩阵D中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞,矩阵P的值为顶点b[i][j]的j的值。 接下来开始,对矩阵D进行N次更新。第1次更新时,如果”a[i][j]的距离” > “a[i][0]+a[0][j]”(a[i][0]+a[0][j]表示”i与j之间经过第1个顶点的距离”),则更新a[i][j]为”a[i][0]+a[0][j]”,更新b[i][j]=b[i][0]。 同理,第k次更新时,如果”a[i][j]的距离” > “a[i][k-1]+a[k-1][j]”,则更新a[i][j]为”a[i][k-1]+a[k-1][j]”,b[i][j]=b[i][k-1]。更新N次之后,操作完成!

    举个例子:已知下图,

    081029zdxxq919ttqt8tu8.png

      如现在只允许经过1号顶点,求任意两点之间的最短路程,只需判断e[i][1]+e[1][j]是否比e[i][j]要小即可。e[i][j]表示的是从i号顶点到j号顶点之间的路程。e[i][1]+e[1][j]表示的是从i号顶点先到1号顶点,再从1号顶点到j号顶点的路程之和。其中i是1~n循环,j也是1~n循环,代码实现如下。

    for(i=1; i<=n; i++)
    {
        for(j=1; j<=n; j++)
        {
            if ( e[i][j] > e[i][1]+e[1][j] )
                e[i][j] = e[i][1]+e[1][j];
        }
    }

      接下来继续求在只允许经过1和2号两个顶点的情况下任意两点之间的最短路程。在只允许经过1号顶点时任意两点的最短路程的结果下,再判断如果经过2号顶点是否可以使得i号顶点到j号顶点之间的路程变得更短。即判断e[i][2]+e[2][j]是否比e[i][j]要小,代码实现为如下。

    //经过1号顶点
    for(i=1; i<=n; i++)
        for(j=1; j<=n; j++)
            if (e[i][j] > e[i][1]+e[1][j]) 
                e[i][j]=e[i][1]+e[1][j];
    //经过2号顶点
    for(i=1; i<=n; i++)
        for(j=1; j<=n; j++)
            if (e[i][j] > e[i][2]+e[2][j])  
                e[i][j]=e[i][2]+e[2][j];

      最后允许通过所有顶点作为中转,代码如下:

    for(k=1; k<=n; k++)
        for(i=1; i<=n; i++)
            for(j=1; j<=n; j++)
                if(e[i][j]>e[i][k]+e[k][j])
                    e[i][j]=e[i][k]+e[k][j];

    这段代码的基本思想就是:最开始只允许经过1号顶点进行中转,接下来只允许经过1和2号顶点进行中转……允许经过1~n号所有顶点进行中转,求任意两点之间的最短路程。与上面相同

    核心代码:

        for(k=1; k<=n; k++)
            for(i=1; i<=n; i++)
                for(j=1; j<=n; j++)
                    if(map[i][j]>map[i][k]+map[k][j])
                        map[i][j]=map[i][k]+map[k][j];
    宝剑锋从磨砺出 梅花香自苦寒来
  • 相关阅读:
    bootstrap 辅助类
    bootstrap 表单类
    bootstrap 图片类 和 按钮类 部分
    angularJs学习笔记-入门
    react-conponent-todo
    react-conponent-secondesElapsed
    react-conponent-hellocynthia
    react学习笔记1
    1970年// iPhone “变砖”后可继续正常使用的解决方案
    23种设计模式
  • 原文地址:https://www.cnblogs.com/GHzcx/p/9148044.html
Copyright © 2011-2022 走看看