zoukankan      html  css  js  c++  java
  • 【Luogu P3338】[ZJOI2014]力

    链接:

    洛谷

    题目大意:

    给出 (n) 个数 (q_1,q_2,cdots,q_n),定义:

    [F_j=sum_{i = 1}^{j - 1} frac{q_i cdot q_j}{(i - j)^2}-sum_{i = j + 1}^{n} frac{q_i cdot q_j}{(i - j)^2}\ E_i=frac{F_i}{q_i}]

    (1leq ileq n),求 (E_i) 的值。

    正文:

    (F_i) 代入 (E_i) 得到:

    [egin{aligned}E_i&=sum_{j = 1}^{i - 1} frac{q_j}{(i - j)^2}-sum_{j = i + 1}^{n} frac{q_j}{(i - j)^2}\ &=sum_{j = 1}^{i} frac{q_j}{(i - j)^2}-sum_{j = i}^{n} frac{q_j}{(i - j)^2}end{aligned}]

    (f_i=q_i,g_i=frac{1}{i^2}),那么:

    [E_i=sum_{j = 1}^{i} f_j cdot g_{i-j} -sum_{j = i}^{n} f_j cdot g_{j-i} ]

    左边的和式已经在卷了,想办法让右边的和式也转化成卷积的形式。

    可以将它转化成这样:

    [sum_{j = 0}^{n-i} f_{i+j} cdot g_{j} ]

    (f'_i=f_{n-i}) 得到:

    [sum_{j = 0}^{n-i} f'_{n-(i+j)} cdot g_{j}=sum_{j = 0}^{n-i} f'_{n-i-j} cdot g_{j} ]

    定义 (t=n-i)

    [sum_{j = 0}^{t} f'_{t-j} cdot g_{j} ]

    这个和式也是卷积形式了,FFT 求解了。

    const int N = 200010;
    
    const double PI = acos(-1.0);
    
    struct Complex
    {
    	double x, y;
    	Complex (double ix, double iy) {x = ix, y = iy;}
    	Complex () {x = y = 0;}
    	Complex operator + (Complex &b) 
    	{
    		return Complex(x + b.x, y + b.y);
    	}
    	Complex operator - (Complex &b) 
    	{
    		return Complex(x - b.x, y - b.y);
    	}
    	Complex operator * (Complex &b) 
    	{
    		return Complex(x * b.x - y * b.y, x * b.y + y * b.x);
    	}
    	
    }a[N << 1], b[N << 1], c[N << 1];
    
    int n, m;
    int tr[N << 1];
    
    void FFT (Complex *f, bool isDFT)
    {
    	for (int i = 0; i <= n; i++)
    		if (i < tr[i]) swap (f[i], f[tr[i]]);
    	
    	for (int p = 2; p <= n; p <<= 1)
    	{
    		int len = p >> 1;
    		Complex omega(cos(2 * PI / p), sin(2 * PI / p));
    		if (!isDFT) omega.y *= -1;
    		for (int k = 0; k < n; k += p)
    		{
    			Complex tmp(1, 0);
    			for (int i = k; i < k + len; i ++)
    			{
    				Complex y = tmp * f[i + len];
    				f[i + len] = f[i] - y;
    				f[i] = f[i] + y;
    				tmp = tmp * omega;
    			}
    		}
    	}
    	if(!isDFT) for (int i = 0; i < n; i++) f[i].x /= n;
    }
    
    int main()
    {
    	scanf ("%d", &n);
    	for (int i = 1; i <= n; i++)
    		scanf ("%lf", &a[i].x),
    		c[n - i].x = a[i].x, b[i].x = (double) (1.0 / i / i);
    		
    	for (m = n, n = 1; n <= (m << 1); n <<= 1);
    	for (int i = 0; i < n; i++)
    		tr[i] = (tr[i >> 1] >> 1) | (i & 1? n >> 1: 0);
    	
    	FFT(a, 1), FFT(b, 1), FFT(c, 1);
    	
    	for (int i = 0; i < n; i++) a[i] = a[i] * b[i], c[i] = c[i] * b[i];
    		
    	FFT(a, 0), FFT(c, 0);
    	for (int i = 1; i <= m; i++)
    		printf ("%.3lf
    ", a[i].x - c[m - i].x);
    	return 0;
    }
    
  • 相关阅读:
    jq实现多级手风琴效果
    css弹性盒布局
    css兼容处理
    bootstrap--双日历插件
    char*,string,char a[], const char *,之间的转换
    8.Maximum Depth of Binary Tree
    7. Minimum Depth of Binary Tree-LeetCode
    6. Reverse Linked List 逆转单链表
    5.Maximum Product Subarray-Leetcode
    卷积神经网络(Convolutional Neural Networks)CNN
  • 原文地址:https://www.cnblogs.com/GJY-JURUO/p/14584192.html
Copyright © 2011-2022 走看看