zoukankan      html  css  js  c++  java
  • 二维树状数组基本操作

    单点修改区间查询

    LOJ #133. 二维树状数组 1:单点修改,区间查询

    根据二维前缀和的思想对普通树状数组优化:

    const int N = 4106;
    
    inline ll Read()
    {
    	ll x = 0, f = 1;
    	char c = getchar();
    	while (c != '-' && (c < '0' || c > '9')) c = getchar();
    	if (c == '-') f = -f, c = getchar();
    	while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
    	return x * f;
    }
    
    int n, m;
    ll t[N][N];
    
    void modify(int x, int y, ll val)
    {
    	for (int i = x; i <= n; i += i & -i)
    		for (int j = y; j <= m; j += j & -j)
    			t[i][j] += val;
    }
    
    ll query(int x, int y)
    {
    	ll ans = 0;
    	for (int i = x; i; i -= i & -i)
    		for (int j = y; j; j -= j & -j)
    			ans += t[i][j];
    	return ans;
    }
    
    int main()
    {
    	n = Read(), m = Read(); 
    	for (int op, a, b, c, d; scanf ("%d", &op) != EOF; )
    	{
    		if(op == 2) a = Read(), b = Read(), c = Read(), d = Read(), 
    			printf ("%lld
    ", query(c, d) - query(a - 1, d) - query(c, b - 1) + query(a - 1, b - 1));
    		else a = Read(), b = Read(), c = Read(), modify(a, b, c);
    	}
    	return 0;
    }
    

    单点修改区间查询

    LOJ #135. 二维树状数组 3:区间修改,区间查询

    一般区间修改的树状数组维护的都是差分数组,那么二维的也应该维护二维差分数组,接着是求和:

    [egin{aligned}&sum_{x=1}^{a}sum_{y=1}^{b}sum_{i=1}^{x}sum_{j=1}^{y}t_{i,j}\ =&sum_{i=1}^{a}sum_{j=1}^{b}(a-i+1)(b-j+1)t_{i,j}\ =&(a+1)(b+1)sum_{i=1}^{a}sum_{j=1}^{b}t_{i,j}-\ &(b+1)sum_{i=1}^{a}sum_{j=1}^{b}t_{i,j}cdot i-\ &(a+1)sum_{i=1}^{a}sum_{j=1}^{b}t_{i,j}cdot j+\ &sum_{i=1}^{a}sum_{j=1}^{b}t_{i,j}cdot ijend{aligned}]

    const int N = 4106;
    
    inline ll Read()
    {
    	ll x = 0, f = 1;
    	char c = getchar();
    	while (c != '-' && (c < '0' || c > '9')) c = getchar();
    	if (c == '-') f = -f, c = getchar();
    	while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
    	return x * f;
    }
    
    int n, m;
    ll t[4][N][N];
    
    void modify(int x, int y, ll val)
    {
    	for (int i = x; i <= n; i += i & -i)
    		for (int j = y; j <= m; j += j & -j)
    			t[0][i][j] += val,
    			t[1][i][j] += val * x,
    			t[2][i][j] += val * y,
    			t[3][i][j] += val * x * y;
    }
    
    ll query(int x, int y)
    {
    	ll ans = 0;
    	for (int i = x; i; i -= i & -i)
    		for (int j = y; j; j -= j & -j)
    			ans += (x + 1) * (y + 1) * t[0][i][j] - 
    			       (y + 1) * t[1][i][j] -
    				   (x + 1) * t[2][i][j] + 
    				   t[3][i][j];
    	return ans;
    }
    
    int main()
    {
    	n = Read(), m = Read(); 
    	for (int op, a, b, c, d, k; scanf ("%d", &op) != EOF; )
    	{
    		if(op == 2) a = Read(), b = Read(), c = Read(), d = Read(), 
    			printf ("%lld
    ", query(c, d) - query(a - 1, d) - query(c, b - 1) + query(a - 1, b - 1));
    		else a = Read(), b = Read(), c = Read(), d = Read(), k = Read(), 
    			modify(a, b, k), modify(a, d + 1, -k), modify(c + 1, b, -k), modify(c + 1, d + 1, k);
    	}
    	return 0;
    }
    
  • 相关阅读:
    CentOS6.5配置网络
    php curl 总结
    laravel-5-doctrine-2 教程
    DOS 总结
    Centos如何通过yum安装php7
    sql with 写法
    php 汉字转拼音函数
    MYSQL 升序排序但值为0的排最后
    zookeeper基础知识
    初识redis
  • 原文地址:https://www.cnblogs.com/GJY-JURUO/p/14876365.html
Copyright © 2011-2022 走看看