zoukankan      html  css  js  c++  java
  • hdu 3666 THE MATRIX PROBLEM (差分约束)

    THE MATRIX PROBLEM

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 6380    Accepted Submission(s): 1633


    Problem Description
    You have been given a matrix CN*M, each element E of CN*M is positive and no more than 1000, The problem is that if there exist N numbers a1, a2, … an and M numbers b1, b2, …, bm, which satisfies that each elements in row-i multiplied with ai and each elements in column-j divided by bj, after this operation every element in this matrix is between L and U, L indicates the lowerbound and U indicates the upperbound of these elements.
     
    Input
    There are several test cases. You should process to the end of file.
    Each case includes two parts, in part 1, there are four integers in one line, N,M,L,U, indicating the matrix has N rows and M columns, L is the lowerbound and U is the upperbound (1<=N、M<=400,1<=L<=U<=10000). In part 2, there are N lines, each line includes M integers, and they are the elements of the matrix.

     
    Output
    If there is a solution print "YES", else print "NO".
     
    Sample Input
    3 3 1 6 2 3 4 8 2 6 5 2 9
     
    Sample Output
    YES
     
    Source
     
    Recommend
    lcy   |   We have carefully selected several similar problems for you:  3665 3669 3667 3664 3663 
     
     1 //1671MS    8128K    1290 B    G++    
     2 /*
     3 
     4     题意:
     5         给出一个n*m的矩阵,问是否存在ai、bj,使
     6             l<=g[i][j](ai/bj)<=u
     7     
     8     差分约束:
     9         看到这种形式的题目应该首先想到差分约束了。
    10         这里有个小变形
    11              log(l')<=log(ai)-log(bj)<=log(u')
    12              l'=l/(g[i][j]),u'=u/(g[i][j])
    13         这样,我们就可以的到所要的不等式组 
    14         注意建图时总点数为 n+m
    15         注意这里判断负环只要循环超过sqrt(n+m)次即可跳出,不然会超时 
    16 
    17 */
    18 #include<stdio.h>
    19 #include<math.h>
    20 #include<string.h>
    21 #define N 1005
    22 #define inf 0x7fffffff
    23 struct  node{
    24     int u,v;
    25     double w;
    26 }edge[N*N];
    27 double g[N][N];
    28 double d[N];
    29 int n,m;
    30 double l,r;
    31 int edgenum;
    32 void addedge(int u,int v,double w)
    33 {
    34     edge[edgenum].u=u;
    35     edge[edgenum].v=v;
    36     edge[edgenum++].w=w;
    37 }
    38 bool bellman_ford()
    39 {
    40     int k=(int)sqrt(1.0*(n+m));
    41     memset(d,0,sizeof(d));
    42     for(int i=0;i<k;i++){
    43         int flag=1;
    44         for(int j=0;j<edgenum;j++)
    45             if(d[edge[j].v]>d[edge[j].u]+edge[j].w){
    46                 flag=0;
    47                 d[edge[j].v]=d[edge[j].u]+edge[j].w;
    48             }
    49         if(flag) break;
    50     }
    51     for(int j=0;j<edgenum;j++)
    52         if(d[edge[j].v]>d[edge[j].u]+edge[j].w)
    53             return false;
    54     return true;
    55 }
    56 int main(void)
    57 {
    58     while(scanf("%d%d%lf%lf",&n,&m,&l,&r)!=EOF)
    59     {
    60         edgenum=0;
    61         for(int i=1;i<=n;i++)
    62             for(int j=1;j<=m;j++)
    63                 scanf("%lf",&g[i][j]);
    64         for(int i=1;i<=n;i++) 
    65             for(int j=1;j<=m;j++){
    66                 addedge(i,j+n,-log(l/g[i][j]));
    67                 addedge(j+n,i,log(r/g[i][j]));
    68             } 
    69         if(bellman_ford()) puts("YES");
    70         else puts("NO");
    71     }
    72     return 0;
    73 }
  • 相关阅读:
    给刚工作不久的程序猿同学的一封信
    Java进阶篇设计模式之六 ----- 组合模式和过滤器模式
    Java进阶篇设计模式之五-----外观模式和装饰器模式
    Java进阶篇设计模式之四 -----适配器模式和桥接模式
    Java进阶篇设计模式之三 ----- 建造者模式和原型模式
    SpringBoot简单打包部署(附工程)
    SSM框架——详细整合教程(Spring+SpringMVC+MyBatis)【转载】
    Eclipse快捷键大全(转载)
    在redis一致性hash(shard)中使用lua脚本的坑
    如何评价微软Connect 2015?[转载]
  • 原文地址:https://www.cnblogs.com/GO-NO-1/p/3450809.html
Copyright © 2011-2022 走看看