zoukankan      html  css  js  c++  java
  • hdu 3666 THE MATRIX PROBLEM (差分约束)

    THE MATRIX PROBLEM

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 6380    Accepted Submission(s): 1633


    Problem Description
    You have been given a matrix CN*M, each element E of CN*M is positive and no more than 1000, The problem is that if there exist N numbers a1, a2, … an and M numbers b1, b2, …, bm, which satisfies that each elements in row-i multiplied with ai and each elements in column-j divided by bj, after this operation every element in this matrix is between L and U, L indicates the lowerbound and U indicates the upperbound of these elements.
     
    Input
    There are several test cases. You should process to the end of file.
    Each case includes two parts, in part 1, there are four integers in one line, N,M,L,U, indicating the matrix has N rows and M columns, L is the lowerbound and U is the upperbound (1<=N、M<=400,1<=L<=U<=10000). In part 2, there are N lines, each line includes M integers, and they are the elements of the matrix.

     
    Output
    If there is a solution print "YES", else print "NO".
     
    Sample Input
    3 3 1 6 2 3 4 8 2 6 5 2 9
     
    Sample Output
    YES
     
    Source
     
    Recommend
    lcy   |   We have carefully selected several similar problems for you:  3665 3669 3667 3664 3663 
     
     1 //1671MS    8128K    1290 B    G++    
     2 /*
     3 
     4     题意:
     5         给出一个n*m的矩阵,问是否存在ai、bj,使
     6             l<=g[i][j](ai/bj)<=u
     7     
     8     差分约束:
     9         看到这种形式的题目应该首先想到差分约束了。
    10         这里有个小变形
    11              log(l')<=log(ai)-log(bj)<=log(u')
    12              l'=l/(g[i][j]),u'=u/(g[i][j])
    13         这样,我们就可以的到所要的不等式组 
    14         注意建图时总点数为 n+m
    15         注意这里判断负环只要循环超过sqrt(n+m)次即可跳出,不然会超时 
    16 
    17 */
    18 #include<stdio.h>
    19 #include<math.h>
    20 #include<string.h>
    21 #define N 1005
    22 #define inf 0x7fffffff
    23 struct  node{
    24     int u,v;
    25     double w;
    26 }edge[N*N];
    27 double g[N][N];
    28 double d[N];
    29 int n,m;
    30 double l,r;
    31 int edgenum;
    32 void addedge(int u,int v,double w)
    33 {
    34     edge[edgenum].u=u;
    35     edge[edgenum].v=v;
    36     edge[edgenum++].w=w;
    37 }
    38 bool bellman_ford()
    39 {
    40     int k=(int)sqrt(1.0*(n+m));
    41     memset(d,0,sizeof(d));
    42     for(int i=0;i<k;i++){
    43         int flag=1;
    44         for(int j=0;j<edgenum;j++)
    45             if(d[edge[j].v]>d[edge[j].u]+edge[j].w){
    46                 flag=0;
    47                 d[edge[j].v]=d[edge[j].u]+edge[j].w;
    48             }
    49         if(flag) break;
    50     }
    51     for(int j=0;j<edgenum;j++)
    52         if(d[edge[j].v]>d[edge[j].u]+edge[j].w)
    53             return false;
    54     return true;
    55 }
    56 int main(void)
    57 {
    58     while(scanf("%d%d%lf%lf",&n,&m,&l,&r)!=EOF)
    59     {
    60         edgenum=0;
    61         for(int i=1;i<=n;i++)
    62             for(int j=1;j<=m;j++)
    63                 scanf("%lf",&g[i][j]);
    64         for(int i=1;i<=n;i++) 
    65             for(int j=1;j<=m;j++){
    66                 addedge(i,j+n,-log(l/g[i][j]));
    67                 addedge(j+n,i,log(r/g[i][j]));
    68             } 
    69         if(bellman_ford()) puts("YES");
    70         else puts("NO");
    71     }
    72     return 0;
    73 }
  • 相关阅读:
    Drcom账户管理Server端解说
    Hadoop常见异常及其解决方式
    PHP 获取网络接口文件流
    【刷题小记67】三角形面积
    Tiny语言编译器简单介绍
    矩阵十题【六】 poj3070 Fibonacci
    函数名称
    设计模式--6大原则--开闭原则
    LeetCode96:Unique Binary Search Trees
    [Swift]LeetCode958. 二叉树的完全性检验 | Check Completeness of a Binary Tree
  • 原文地址:https://www.cnblogs.com/GO-NO-1/p/3450809.html
Copyright © 2011-2022 走看看