zoukankan      html  css  js  c++  java
  • hdu 1211 RSA (逆元)

    RSA

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 1243    Accepted Submission(s): 901


    Problem Description
    RSA is one of the most powerful methods to encrypt data. The RSA algorithm is described as follow:

    > choose two large prime integer p, q
    > calculate n = p × q, calculate F(n) = (p - 1) × (q - 1)
    > choose an integer e(1 < e < F(n)), making gcd(e, F(n)) = 1, e will be the public key
    > calculate d, making d × e mod F(n) = 1 mod F(n), and d will be the private key

    You can encrypt data with this method :

    C = E(m) = me mod n

    When you want to decrypt data, use this method :

    M = D(c) = cd mod n

    Here, c is an integer ASCII value of a letter of cryptograph and m is an integer ASCII value of a letter of plain text.

    Now given p, q, e and some cryptograph, your task is to "translate" the cryptograph into plain text.
     
    Input
    Each case will begin with four integers p, q, e, l followed by a line of cryptograph. The integers p, q, e, l will be in the range of 32-bit integer. The cryptograph consists of l integers separated by blanks. 
     
    Output
    For each case, output the plain text in a single line. You may assume that the correct result of plain text are visual ASCII letters, you should output them as visualable letters with no blank between them.
     
    Sample Input
    101 103 7 11
    7716 7746 7497 126 8486 4708 7746 623 7298 7357 3239
     
    Sample Output
    I-LOVE-ACM.
     
    Author
    JGShining(极光炫影)
     
    Source
     
    Recommend
    Eddy   |   We have carefully selected several similar problems for you:  1299 1695 1573 1213 1576 
     
     1 //0MS    236K    1318 B    G++
     2 /*
     3 
     4     题意:
     5         RSA密码加解密法的解密
     6     
     7     模拟题:
     8         可以算水题,不过也磨了挺久,一是逆元求法不明确,
     9     二是O(lgn)的n次方模数算法忘了,三是没注意64位,
    10     还有电脑有点卡!!郁闷 
    11 
    12 */
    13 #include<stdio.h>
    14 #include<string.h>
    15 /***************************************
    16 函数:ExGcd 
    17 功能:求两个数的最大公约数和模P的乘法逆元。
    18 输入:a,b 输入参数,求这两个数的最大公约数
    19    和a模b的逆元 或 b模a的逆元。
    20 输出:x,y 分别表示a模b的逆元和b模a的逆元。
    21 返回:r 表示a b 的最大公约数。
    22 *************************************/
    23 __int64 Exgcd(__int64 a,__int64 b,__int64 &x,__int64 &y)
    24 {
    25     if(b==0){
    26         x=1;
    27         y=0;
    28         return a;
    29     }
    30     __int64 r=Exgcd(b,a%b,x,y);
    31     __int64 t=x;
    32     x=y;
    33     y=t-a/b*y;
    34     return r;
    35 } 
    36 __int64 fac(__int64 a,__int64 d,__int64 n)
    37 {
    38     a%=n;
    39     int t=1;
    40     while(d){
    41         if(d%2) t=(t*a)%n; 
    42         a=(a*a)%n;
    43         d/=2;
    44     }
    45     return t;
    46 }
    47 int main(void)
    48 {
    49     __int64 p,q,e;
    50     __int64 l,a;
    51     while(scanf("%I64d%I64d%I64d%I64d",&p,&q,&e,&l)!=EOF)
    52     { 
    53         char c[105];
    54         memset(c,0,sizeof(c));
    55         __int64 d1=0,d2=0;
    56         __int64 n=p*q;
    57         Exgcd(e,(p-1)*(q-1),d1,d2);
    58         d1=(d1+(p-1)*(q-1))%((p-1)*(q-1));
    59         //printf("%d %d",d1,d2); 
    60         for(int i=0;i<l;i++){
    61             scanf("%I64d",&a);
    62             a=fac(a,d1,n);
    63             int b=a;
    64             c[i]=b;
    65             //printf("%d %d %c
    ",a,c[i],c[i]);
    66         }
    67         puts(c);
    68     }
    69     return 0;
    70 }
  • 相关阅读:
    字符串匹配常见算法(BF,RK,KMP,BM,Sunday)
    JSP基本语法总结【1】(jsp工作原理,脚本元素,指令元素,动作元素)
    JUnit【1】断言用法之assertEquals/True/False/ArrayEquals
    软件测试基础配置
    前端入门20-JavaScript进阶之异步回调的执行时机
    前端入门19-JavaScript进阶之闭包
    前端入门18-JavaScript进阶之作用域链
    前端入门17-JavaScript进阶之作用域
    前端入门16-JavaScript进阶之EC和VO
    前端入门15-JavaScript进阶之原型链
  • 原文地址:https://www.cnblogs.com/GO-NO-1/p/3614660.html
Copyright © 2011-2022 走看看