zoukankan      html  css  js  c++  java
  • hdu 1787 GCD Again (欧拉函数)

    GCD Again

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2257    Accepted Submission(s): 908


    Problem Description
    Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
    No? Oh, you must do this when you want to become a "Big Cattle".
    Now you will find that this problem is so familiar:
    The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem: 
    Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
    This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
    Good Luck!
     
    Input
    Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
     
    Output
    For each integers N you should output the number of integers M in one line, and with one line of output for each line in input. 
     
    Sample Input
    2
    4
    0
     
    Sample Output
    0
    1
     
    Author
    lcy
     
    Source
     
    Recommend
    lcy   |   We have carefully selected several similar problems for you:  1788 1695 1573 1905 1299 

     模板题:

     1 //0MS    200K    399 B    G++
     2 #include<stdio.h>
     3 int euler(int n)
     4 {
     5     int ret=1;
     6     for(int i=2;i*i<=n;i++){
     7         if(n%i==0){
     8             n/=i;ret*=i-1;
     9             while(n%i==0){
    10                 n/=i;ret*=i;
    11             }
    12         }
    13     }
    14     if(n>1) ret*=n-1;
    15     return ret;
    16 }
    17 int main(void)
    18 {
    19     int n;
    20     while(scanf("%d",&n),n)
    21     {
    22         printf("%d
    ",n-euler(n)-1);
    23     }
    24     return 0;
    25 }
  • 相关阅读:
    对象生成xml
    Memcache使用指南
    java实现AES加密解密
    Log4j常用的配置说明
    java利用dom4j对任意xml的解析
    一个不错的JDBC连接池教程
    jwt介绍
    model基础操作
    图书管理系统前端
    图书管理系统后端
  • 原文地址:https://www.cnblogs.com/GO-NO-1/p/3651687.html
Copyright © 2011-2022 走看看