zoukankan      html  css  js  c++  java
  • hdu 1787 GCD Again (欧拉函数)

    GCD Again

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2257    Accepted Submission(s): 908


    Problem Description
    Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
    No? Oh, you must do this when you want to become a "Big Cattle".
    Now you will find that this problem is so familiar:
    The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem: 
    Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
    This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
    Good Luck!
     
    Input
    Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
     
    Output
    For each integers N you should output the number of integers M in one line, and with one line of output for each line in input. 
     
    Sample Input
    2
    4
    0
     
    Sample Output
    0
    1
     
    Author
    lcy
     
    Source
     
    Recommend
    lcy   |   We have carefully selected several similar problems for you:  1788 1695 1573 1905 1299 

     模板题:

     1 //0MS    200K    399 B    G++
     2 #include<stdio.h>
     3 int euler(int n)
     4 {
     5     int ret=1;
     6     for(int i=2;i*i<=n;i++){
     7         if(n%i==0){
     8             n/=i;ret*=i-1;
     9             while(n%i==0){
    10                 n/=i;ret*=i;
    11             }
    12         }
    13     }
    14     if(n>1) ret*=n-1;
    15     return ret;
    16 }
    17 int main(void)
    18 {
    19     int n;
    20     while(scanf("%d",&n),n)
    21     {
    22         printf("%d
    ",n-euler(n)-1);
    23     }
    24     return 0;
    25 }
  • 相关阅读:
    taotao-manager-service/pom.xml
    Grafana+Prometheus 监控 MySQL
    firewall-cmd 常用命令
    K8S 容器的资源需求、资源限制
    K8S 高级调度方式
    性能测试工具 Locust 安装
    cookie 和 session区别
    K8S 调度器,预选策略,优选函数
    CPU 实用工具
    *(int*)&p
  • 原文地址:https://www.cnblogs.com/GO-NO-1/p/3651687.html
Copyright © 2011-2022 走看看