zoukankan      html  css  js  c++  java
  • hdu 2838 Cow Sorting (树状数组)

    Cow Sorting

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2185    Accepted Submission(s): 683


    Problem Description
    Sherlock's N (1 ≤ N ≤ 100,000) cows are lined up to be milked in the evening. Each cow has a unique "grumpiness" level in the range 1...100,000. Since grumpy cows are more likely to damage Sherlock's milking equipment, Sherlock would like to reorder the cows in line so they are lined up in increasing order of grumpiness. During this process, the places of any two cows (necessarily adjacent) can be interchanged. Since grumpy cows are harder to move, it takes Sherlock a total of X + Y units of time to exchange two cows whose grumpiness levels are X and Y.

    Please help Sherlock calculate the minimal time required to reorder the cows.
     
    Input
    Line 1: A single integer: N
    Lines 2..N + 1: Each line contains a single integer: line i + 1 describes the grumpiness of cow i.
     
    Output
    Line 1: A single line with the minimal time required to reorder the cows in increasing order of grumpiness.
     
    Sample Input
    3
    2 3 1
     
    Sample Output
    7
     
    Hint
    Input Details Three cows are standing in line with respective grumpiness levels 2, 3, and 1. Output Details 2 3 1 : Initial order. 2 1 3 : After interchanging cows with grumpiness 3 and 1 (time=1+3=4). 1 2 3 : After interchanging cows with grumpiness 1 and 2 (time=2+1=3).
     
    Source
     
    Recommend
    gaojie   |   We have carefully selected several similar problems for you:  3450 2227 3030 2642 2836 
     

    题意:

        求逆序数两两的总和: 如 3 2 1 :sum=(3+2)+(3+1)+(2+1)=12;   1 2 3: sum=0;

    树状数组:

        其实这题并不难,抓住一个点和熟悉树状数组大概就可以做出来了,那个点就是如何求得和。

        这里才用的方法是参考别人的 ,自己想了一段时间没想出来。

        对于新插入的一个元素,运用树状数组,可以求得比它小的元素的个数,比它小的元素的和,在它之前的元素的总和。

        而对于每一个新元素,其sum[m]=m*(比它大的元素个数)+(前i个元素的和)-(比它小的元素的和)。

        然后累加得解。

    实现:

     1 //46MS    2584K    955 B    C++
     2 #include<stdio.h>
     3 #include<string.h>
     4 #define ll __int64
     5 #define N 100005
     6 ll cnt[N],ssum[N],tsum[N];
     7 inline ll lowbit(ll k)
     8 {
     9     return k&(-k);
    10 }
    11 void update(ll c[],ll k,ll detal)
    12 {
    13     for(;k<N;k+=lowbit(k))
    14         c[k]+=detal;
    15 }
    16 ll getsum(ll c[],ll k)
    17 {
    18     ll s=0;
    19     for(;k>0;k-=lowbit(k))
    20         s+=c[k];
    21     return s;
    22 }
    23 int main(void)
    24 {
    25     ll n,m;
    26     while(scanf("%I64d",&n)!=EOF)
    27     {
    28         memset(cnt,0,sizeof(cnt));
    29         memset(ssum,0,sizeof(ssum));
    30         memset(tsum,0,sizeof(tsum));
    31         ll s=0,temp=0;
    32         for(ll i=1;i<=n;i++){
    33             scanf("%I64d",&m);
    34             update(cnt,m,1); 
    35             update(ssum,m,m);
    36             update(tsum,i,m);
    37             temp=getsum(cnt,m-1);
    38             s+=m*(i-temp-1);
    39             s+=getsum(tsum,i-1);
    40             s-=getsum(ssum,m-1); 
    41             //printf("**%I64d
    ",s);
    42         } 
    43         printf("%I64d
    ",s);
    44     }
    45     return 0;
    46 }
  • 相关阅读:
    [php learn] php 从头開始学习1
    Qt实现Windows远程控制
    [core java学习笔记][第十一章异常断言日志调试]
    网络安全-安全散列函数,信息摘要SHA-1,MD5原理
    Cardboard虚拟现实开发初步(二)
    C#中Stack&lt;T&gt;类的使用及部分成员函数的源代码分析
    编程算法
    读取spring配置文件的方法(spring读取资源文件)
    Spring中的事务管理详解
    配置spring事务管理的几种方式(声明式事务)
  • 原文地址:https://www.cnblogs.com/GO-NO-1/p/3690889.html
Copyright © 2011-2022 走看看