zoukankan      html  css  js  c++  java
  • poj 2109 Power of Cryptography

    Power of Cryptography
    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 17912   Accepted: 9034

    Description

    Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers among these primes. Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be only of theoretical interest. 
    This problem involves the efficient computation of integer roots of numbers. 
    Given an integer n>=1 and an integer p>= 1 you have to write a program that determines the n th positive root of p. In this problem, given such integers n and p, p will always be of the form k to the nth. power, for an integer k (this integer is what your program must find).

    Input

    The input consists of a sequence of integer pairs n and p with each integer on a line by itself. For all such pairs 1<=n<= 200, 1<=p<10101 and there exists an integer k, 1<=k<=109 such that kn = p.

    Output

    For each integer pair n and p the value k should be printed, i.e., the number k such that k n =p.

    Sample Input

    2 16
    3 27
    7 4357186184021382204544

    Sample Output

    4
    3
    1234

    Source

     
    正常算法是二分+高精度。
     
    可是由下表:

    类型          长度 (bit)           有效数字          绝对值范围
    float             32                      6~7                  10^(-37) ~ 10^38
    double          64                     15~16               10^(-307) ~10^308
    long double   128                   18~19                10^(-4931) ~ 10 ^ 4932

    可以一步算出结果,如果多步会丢失精度:

     1 //180K    0MS    C++    195B    2014-05-08 13:47:15
     2 #include<stdio.h>
     3 #include<math.h>
     4 int main(void)
     5 {
     6     int n;
     7     double p;
     8     while(scanf("%d%lf",&n,&p)!=EOF)
     9     {
    10         printf("%.0lf
    ",pow(p,1.0/n));
    11     }
    12     return 0;
    13 } 

    写了二分法的不过应该是处理不够好,没过就不贴了。

  • 相关阅读:
    递归的狂想(菜鸟的胡思乱想)
    关于fiddler的使用总结
    关于mac下 sublime 安装配置java及运行java个人建议
    关于VMwareFusion占用内存过多的问题提几点自己的解决方案
    (ubuntu)ubuntu的root密码设置
    Refactoring to Patterns 学习笔记2 为什么要重构?
    Refactoring to Patterns 学习笔记1 什么是重构?
    [转载]数据结构树之红黑树
    【转载】数据结构之图(存储结构、遍历)
    STL库之单链表:forward_list
  • 原文地址:https://www.cnblogs.com/GO-NO-1/p/3716048.html
Copyright © 2011-2022 走看看