zoukankan      html  css  js  c++  java
  • hdu 1086 You can Solve a Geometry Problem too (几何)

    You can Solve a Geometry Problem too

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 6932    Accepted Submission(s): 3350


    Problem Description
    Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
    Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

    Note:
    You can assume that two segments would not intersect at more than one point. 
     
    Input
    Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending. 
    A test case starting with 0 terminates the input and this test case is not to be processed.
     
    Output
    For each case, print the number of intersections, and one line one case.
     
    Sample Input
    2
    0.00 0.00 1.00 1.00
    0.00 1.00 1.00 0.00
    3
    0.00 0.00 1.00 1.00
    0.00 1.00 1.00 0.000
    0.00 0.00 1.00 0.00
    0
     
    Sample Output
    1
    3
     
    Author
    lcy
     
    Recommend
    We have carefully selected several similar problems for you:  2150 1147 1558 3629 1174 
     

     简单数学几何,求n条线段共有几个交点。

     1 //0MS    240K    1146 B    C++
     2 #include<stdio.h> 
     3 #include<math.h>
     4 struct node{
     5     double x1,y1;
     6     double x2,y2;        
     7 }p[105];
     8 double Max(double a,double b)
     9 {
    10     return a>b?a:b;
    11 }
    12 double Min(double a,double b)
    13 {
    14     return a<b?a:b;
    15 }
    16 int judge_in(node a,double x,double y)
    17 {
    18     if(x>=Min(a.x1,a.x2)&&x<=Max(a.x1,a.x2)&&y>=Min(a.y1,a.y2)&&y<=Max(a.y1,a.y2))
    19         return 1;
    20     return 0;
    21 }
    22 int judge(node a,node b)
    23 {
    24     double k1,k2,b1,b2;
    25     if(a.x1==a.x2) k1=0;
    26     else k1=(a.y2-a.y1)/(a.x2-a.x1);
    27     if(b.x1==b.x2) k2=0;
    28     else k2=(b.y2-b.y1)/(b.x2-b.x1);
    29     if(k1==k2) return 0;
    30     
    31     b1=a.y1-k1*a.x1;
    32     b2=b.y1-k2*b.x1;
    33     
    34     double x,y;
    35     x=(b2-b1)/(k1-k2);
    36     y=k1*x+b1;
    37     
    38     if(judge_in(a,x,y) && judge_in(b,x,y))  return 1;
    39     return 0; 
    40 }
    41 int main(void)
    42 {
    43     int n;
    44     while(scanf("%d",&n)!=EOF && n)
    45     {
    46         for(int i=0;i<n;i++)
    47             scanf("%lf%lf%lf%lf",&p[i].x1,&p[i].y1,&p[i].x2,&p[i].y2);
    48         int cnt=0;
    49         for(int i=0;i<n;i++)
    50             for(int j=i+1;j<n;j++)
    51                 cnt+=judge(p[i],p[j]);
    52         printf("%d
    ",cnt);
    53     }
    54     return 0;
    55 }
  • 相关阅读:
    Does the C standard guarantee buffers are not touched past their null terminator?
    Why does the C# compiler translate this != comparison as if it were a > comparison?
    Vim settings file on Windows
    你的团队需要一套工具指南
    精华阅读第 10 期 |解开阿尔法狗(AlphaGo)人工智能的画皮
    时序列数据库武斗大会之TSDB名录 Part 2
    如何用 ANTLR 4 实现自己的脚本语言?
    HTTP/2 对 Web 性能的影响(下)
    如何使用 Apache ab 以及 OneAPM 进行压力测试?
    你所不知道的黑客工具之 EK 篇
  • 原文地址:https://www.cnblogs.com/GO-NO-1/p/3764121.html
Copyright © 2011-2022 走看看