zoukankan      html  css  js  c++  java
  • hdu 1299 Diophantus of Alexandria (数论)

    Diophantus of Alexandria

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 2269    Accepted Submission(s): 851


    Problem Description
    Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first mathematicians to study equations where variables were restricted to integral values. In honor of him, these equations are commonly called diophantine equations. One of the most famous diophantine equation is x^n + y^n = z^n. Fermat suggested that for n > 2, there are no solutions with positive integral values for x, y and z. A proof of this theorem (called Fermat's last theorem) was found only recently by Andrew Wiles.

    Consider the following diophantine equation:

    1 / x + 1 / y = 1 / n where x, y, n ∈ N+ (1)


    Diophantus is interested in the following question: for a given n, how many distinct solutions (i. e., solutions satisfying x ≤ y) does equation (1) have? For example, for n = 4, there are exactly three distinct solutions:

    1 / 5 + 1 / 20 = 1 / 4
    1 / 6 + 1 / 12 = 1 / 4
    1 / 8 + 1 / 8 = 1 / 4



    Clearly, enumerating these solutions can become tedious for bigger values of n. Can you help Diophantus compute the number of distinct solutions for big values of n quickly?
     
    Input
    The first line contains the number of scenarios. Each scenario consists of one line containing a single number n (1 ≤ n ≤ 10^9).
     
    Output
    The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Next, print a single line with the number of distinct solutions of equation (1) for the given value of n. Terminate each scenario with a blank line.
     
    Sample Input
    2
    4
    1260
     
    Sample Output
    Scenario #1:
    3
     
    Scenario #2:
    113
     
     
    Source
     
    Recommend
    JGShining   |   We have carefully selected several similar problems for you:  1788 1905 3049 1576 1402
     
    这题数论求的是 数的因子个数,设数为n,其可表示为
    n=p1^r1 * p2^r2 * . . . * pn^rn
    其中,p为素数,且可知其n的因子个数
    k=(r1+1)*(r2+2)*...*(rn+1);
     
    又由题可得,
    1/x+y/1=1/n  ==> 
    x>n && y>n   ==> 
    xy=nx+ny,设y=n+k,x=n*(n+k)/k,即所求为n*n的因子个数
    k=(2*r1+1)*(2*r2+2)*...*(2*rn+1);
     
    注意结果要求多少对,故ans=k/2+1;
     1 //140MS    200K    622 B    G++
     2 #include<stdio.h>
     3 #include<math.h>
     4 long long solve(int n)
     5 {
     6     long long ans=1;
     7     int i;
     8     int m=(int)sqrt(n+0.5);
     9     for(i=2;i<=m;i++){
    10         int ret=1; 
    11         if(n%i==0){
    12             n/=i;
    13             while(n%i==0){
    14                 n/=i;ret++;
    15             }
    16             ans*=(2*ret+1);
    17         }
    18         if(n<i) break;
    19     }
    20     if(n>1) ans*=3;
    21     return ans;
    22 }
    23 int main(void)
    24 {
    25     int n;
    26     int cas=1,t;
    27     scanf("%d",&t);
    28     while(t--)
    29     { 
    30         scanf("%d",&n);
    31         printf("Scenario #%d:
    %lld
    ",cas++,solve(n)/2+1);
    32         printf("
    ");
    33     }
    34     return 0;
    35 }
     
  • 相关阅读:
    linux-网卡故障
    css hack
    IE7的overflow失效的解决方法
    Js中 关于top、clientTop、scrollTop、offsetTop的用法
    javascript作用域(Scope),简述上下文(context)和作用域的定义
    统计代码行数的小技巧
    sql复制表、拷贝表、临时表
    string.format
    手机号正则验证
    getBoundingClientRect() 来获取页面元素的位置
  • 原文地址:https://www.cnblogs.com/GO-NO-1/p/3817679.html
Copyright © 2011-2022 走看看