zoukankan      html  css  js  c++  java
  • HDU 1128 Self Numbers

    Self Numbers

    Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 5495    Accepted Submission(s): 2431

    Problem Description
    In 1949 the Indian mathematician D.R. Kaprekar discovered a class of numbers called self-numbers. For any positive integer n, define d(n) to be n plus the sum of the digits of n. (The d stands for digitadition, a term coined by Kaprekar.) For example, d(75) = 75 + 7 + 5 = 87. Given any positive integer n as a starting point, you can construct the infinite increasing sequence of integers n, d(n), d(d(n)), d(d(d(n))), .... For example, if you start with 33, the next number is 33 + 3 + 3 = 39, the next is 39 + 3 + 9 = 51, the next is 51 + 5 + 1 = 57, and so you generate the sequence 33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, ...
    The number n is called a generator of d(n). In the sequence above, 33 is a generator of 39, 39 is a generator of 51, 51 is a generator of 57, and so on. Some numbers have more than one generator: for example, 101 has two generators, 91 and 100. A number with no generators is a self-number. There are thirteen self-numbers less than 100: 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, and 97.
    Write a program to output all positive self-numbers less than or equal 1000000 in increasing order, one per line.
     
    Sample Output
    1
    3
    5
    9
    20
    31
    42
    53
    64
    |
    |
    <-- a lot more numbers
    |
    9903
    9914
    9925
    9927
    9938
    9949
    9960
    9971
    9982
    9993
    |
    |
    |
     
    Source
     
    Recommend
    Eddy
     
    思路:简单处理一下下即可
     
    代码:
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    int map[1000010];
    int n,flag;
    void its_number(int number)
    {
        int sum = number;
        while(number)
        {
            sum += number % 10;
            number /= 10;
        }
        map[sum] = 1;
    }
    int main()
    {
        memset(map,0,sizeof(map));
        for(int i = 1;i <= 1000000;i ++)
        {
                its_number(i);
        }
        for(int i = 1;i <= 1000000;i ++)
           if(map[i] == 0)
               printf("%d ",i);
        return 0;
    }
  • 相关阅读:
    hdu5056(找相同字母不出现k次的子串个数)
    POJ 3613 快速幂+Floyd变形(求限制k条路径的最短路)
    POJ 3613 快速幂+Floyd变形(求限制k条路径的最短路)
    Poj 3522 最长边与最短边差值最小的生成树
    Poj 3522 最长边与最短边差值最小的生成树
    POJ 1716 区间最小点个数
    POJ 1716 区间最小点个数
    POJ 1679 判断最小树是否唯一
    POJ 1679 判断最小树是否唯一
    hdu 5020 求三点共线的组合数(容器记录斜率出现次数)
  • 原文地址:https://www.cnblogs.com/GODLIKEING/p/3345976.html
Copyright © 2011-2022 走看看