zoukankan      html  css  js  c++  java
  • Day2-M-Prime Ring Problem-HDU1016

    A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime. 

    Note: the number of first circle should always be 1. 

     

    Inputn (0 < n < 20). 
    OutputThe output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order. 

    You are to write a program that completes above process. 

    Print a blank line after each case. 
    Sample Input

    6
    8

    Sample Output

    Case 1:
    1 4 3 2 5 6
    1 6 5 2 3 4
    
    Case 2:
    1 2 3 8 5 6 7 4
    1 2 5 8 3 4 7 6
    1 4 7 6 5 8 3 2
    1 6 7 4 3 8 5 2

    思路:依旧是回溯法,逐个判断即可,注意首尾也需要判断一下,用筛法建个表,代码如下:
    const int maxm = 22;
    
    int n, vis[maxm], prime[330], res[maxm], kase = 0;
    
    void buildTable() {
        for (int i = 2; i * i < 330; ++i) {
            if(!prime[i]) {
                for (int j = i * i; j < 330; j += i)
                    prime[j] = 1;
            }
        }
    }
    
    void dfs(int i) {
        if(i == n && !prime[res[0] + res[n-1]]) {
            for (int j = 0; j < n; ++j) {
                if(j)printf(" ");
                printf("%d", res[j]);
            }
            printf("
    ");
        }
        for (int j = 2; j <= n; ++j) {
            if(!vis[j] && !prime[res[i-1] + j]) {
                vis[j] = 1;
                res[i] = j;
                dfs(i + 1);
                vis[j] = 0;
            }
        }
    }
    
    
    int main() {
        buildTable();
        while(scanf("%d",&n) != EOF) {
            printf("Case %d:
    ", ++kase);
            memset(vis, 0, sizeof(vis));
            res[0] = 1;
            vis[1] = 1;
            dfs(1);
            printf("
    ");
        }
        return 0;
    }
    View Code
  • 相关阅读:
    POSTGRESQL 批量权限 管理方法
    centos7安装rabbitmq
    centos7使用cron任务的相关命令(与centos6有区别)
    crontab定时执行shell脚本
    使用kong-dashboard
    Kong组件构成及使用
    Docker基本操作命令
    微服务写的最全的一篇文章
    centos7安装kong和kong-dashboard
    sql练习03
  • 原文地址:https://www.cnblogs.com/GRedComeT/p/11231268.html
Copyright © 2011-2022 走看看