zoukankan      html  css  js  c++  java
  • Day3-O-Median POJ3579

    Given N numbers, X1X2, ... , XN, let us calculate the difference of every pair of numbers: ∣Xi - Xj∣ (1 ≤ i  j  N). We can get C(N,2) differences through this work, and now your task is to find the median of the differences as quickly as you can!

    Note in this problem, the median is defined as the (m/2)-th  smallest number if m,the amount of the differences, is even. For example, you have to find the third smallest one in the case of = 6.

    Input

    The input consists of several test cases.
    In each test case, N will be given in the first line. Then N numbers are given, representing X1X2, ... , XN, ( X≤ 1,000,000,000  3 ≤ N ≤ 1,00,000 )

    Output

    For each test case, output the median in a separate line.

    Sample Input

    4
    1 3 2 4
    3
    1 10 2
    

    Sample Output

    1
    8

    思路:直接N^2肯定行不通,那么我们可以二分差值,满足单调且可验证,最小最大问题,代码如下:
    const int maxm = 100010;
    
    int n, buf[maxm], m;
    
    bool check(int d) {
        int sum = 0;
        for (int i = 0; i < n; ++i) {
            sum += upper_bound(buf + i, buf + n, buf[i] + d) - buf - i - 1;
        }
        return sum >= m;
    }
    
    int main() {
        while(scanf("%d",&n) != EOF) {
            for (int i = 0; i < n; ++i)
                scanf("%d", &buf[i]);
            sort(buf, buf + n);
            m = n * (n - 1) / 2;
            if(m % 2 == 0)
                m = m / 2;
            else
                m = m / 2 + 1;
            int l = 0, r = buf[n - 1] - buf[0], mid;
            while(l <= r) {
                mid = (l + r) >> 1;
                if(check(mid))
                    r = mid - 1;
                else
                    l = mid + 1;
            }
            printf("%d
    ", l);
        }
        return 0;
    }
    View Code
    
    
  • 相关阅读:
    组合模式扩展,有选择的递归
    SQL分页查询【转】
    facade外观模式
    C#:几种数据库的大数据批量插入 faib
    装饰模式的扩展
    yeild之我理解
    数据库操作 sqlserver查询存储过程+分页
    SQL Server 索引结构及其使用(二)[转]
    SQL索引使用初步,(转)
    解决多集成,多子类,扩展等 装饰模式
  • 原文地址:https://www.cnblogs.com/GRedComeT/p/11252747.html
Copyright © 2011-2022 走看看