zoukankan      html  css  js  c++  java
  • Day4

    Bessie's been appointed the new watch-cow for the farm. Every night, it's her job to walk across the farm and make sure that no evildoers are doing any evil. She begins at the barn, makes her patrol, and then returns to the barn when she's done. 

    If she were a more observant cow, she might be able to just walk each of M (1 <= M <= 50,000) bidirectional trails numbered 1..M between N (2 <= N <= 10,000) fields numbered 1..N on the farm once and be confident that she's seen everything she needs to see. But since she isn't, she wants to make sure she walks down each trail exactly twice. It's also important that her two trips along each trail be in opposite directions, so that she doesn't miss the same thing twice. 

    A pair of fields might be connected by more than one trail. Find a path that Bessie can follow which will meet her requirements. Such a path is guaranteed to exist.

    Input

    * Line 1: Two integers, N and M. 

    * Lines 2..M+1: Two integers denoting a pair of fields connected by a path.

    Output

    * Lines 1..2M+1: A list of fields she passes through, one per line, beginning and ending with the barn at field 1. If more than one solution is possible, output any solution.

    Sample Input

    4 5
    1 2
    1 4
    2 3
    2 4
    3 4

    Sample Output

    1
    2
    3
    4
    2
    1
    4
    3
    2
    4
    1

    Hint

    OUTPUT DETAILS: 

    Bessie starts at 1 (barn), goes to 2, then 3, etc...
     
    思路:打印欧拉通路,题目保证有解,直接DFS打印即可,代码如下:
    const int maxm = 10010;
    const int maxn = 50010;
    
    struct Node {
        int from, to;
        Node(int _from, int _to) : from(_from), to(_to){}
    };
    
    int N, M, vis[maxn*2];
    vector<int> ans, G[maxm];
    vector<Node> edges;
    
    void addedge(int u,int v) {
        edges.push_back(Node(u, v));
        G[u].push_back(edges.size() - 1);
    }
    
    void dfs(int x) {
        int len = G[x].size();
        for(int i = 0; i < len; ++i) {
            if(!vis[G[x][i]]) {
                vis[G[x][i]] = 1;
                dfs(edges[G[x][i]].to);
                ans.push_back(edges[G[x][i]].to);
            }
        }
    }
    
    int main() {
        scanf("%d%d", &N, &M);
        for (int i = 0; i < M; ++i) {
            int t1, t2;
            scanf("%d%d", &t1, &t2);
            addedge(t1, t2);
            addedge(t2, t1);
        }
        dfs(1);
        int len = ans.size();
        for(int i = 0; i < len; ++i)
            printf("%d
    ", ans[i]);
        printf("1
    ");
        return 0;
    }
    View Code
  • 相关阅读:
    分析Android中View的工作流程
    什么是分布式锁及正确使用redis实现分布式锁
    机器学习
    吴裕雄--天生自然诗经学习笔记 :醉蓬莱·渐亭皋叶下
    吴裕雄--天生自然诗经学习笔记 :节节高·题洞庭鹿角庙壁
    吴裕雄--天生自然诗经学习笔记 :浪淘沙
    吴裕雄--天生自然诗经学习笔记 :陇头歌辞三首
    吴裕雄--天生自然诗经学习笔记 :贾人食言
    吴裕雄--天生自然诗经学习笔记 :早秋三首
    吴裕雄--天生自然诗经学习笔记 :长相思·惜梅
  • 原文地址:https://www.cnblogs.com/GRedComeT/p/11285674.html
Copyright © 2011-2022 走看看