zoukankan      html  css  js  c++  java
  • Day5

    Given a connected undirected graph, tell if its minimum spanning tree is unique.

    Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:
    1. V' = V.
    2. T is connected and acyclic.

    Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

    Input

    The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

    Output

    For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

    Sample Input

    2
    3 3
    1 2 1
    2 3 2
    3 1 3
    4 4
    1 2 2
    2 3 2
    3 4 2
    4 1 2
    

    Sample Output

    3
    Not Unique!

    思路:找次小生成树,如果权值相等则不唯一,用kruskal实现次小生成树
    const int maxm = 105;
    const int maxn = 10005;
    
    struct edge {
        int u, v, w;
        edge(int _u=-1, int _v=-1, int _w=0):u(_u), v(_v), w(_w){}
        bool operator<(const edge &a) const {
            return w < a.w;
        }
    };
    vector<edge> Edge;
    
    int fa[maxm], T, N, M, tree[maxn], k;
    
    void init() {
        Edge.clear();
        for(int i = 1; i <= N; ++i)
            fa[i] = i;
        k = 0;
    }
    
    int Find(int x) {
        if(fa[x] == x)
            return x;
        return fa[x] = Find(fa[x]);
    }
    
    void Union(int x, int y) {
        x = Find(x), y = Find(y);
        if(x != y) fa[x] = y;
    }
    
    int main() {
        scanf("%d", &T);
        while(T--) {
            int t1, t2, t3, u, v;
            scanf("%d%d", &N, &M);
            init();
            int sum = 0;
            for(int i = 0; i < M; ++i) {
                scanf("%d%d%d", &t1, &t2, &t3);
                Edge.push_back(edge(t1, t2, t3));
            }
            sort(Edge.begin(), Edge.end());
            bool flag = true;
            for(int i = 0; i < M; ++i) {
                u = Edge[i].u, v = Edge[i].v;
                u = Find(u), v = Find(v);
                if(u != v) {
                    sum += Edge[i].w;
                    Union(u,v);
                    tree[k++] = i;
                }
            }
            for(int i = 0; i < k; ++i) {
                int cnt = 0, edgenum = 0;
                for(int t = 1; t <= N; ++t)
                    fa[t] = t;
                for(int j = 0; j < M; ++j) {
                    if(j == tree[i]) continue;
                    u = Edge[j].u, v = Edge[j].v;
                    u = Find(u), v = Find(v);
                    if(u != v) {
                        cnt += Edge[j].w;
                        edgenum++;
                        Union(u,v);
                    }
                }
                if(cnt == sum && edgenum == N - 1) {
                    flag = false;
                    break;
                }
            }
            if(flag)
                printf("%d
    ", sum);
            else printf("Not Unique!
    ");
        }
        return 0;
    }
    View Code

     次小生成树博客:https://www.cnblogs.com/bianjunting/p/10829212.html

    https://blog.csdn.net/niushuai666/article/details/6925258

    注:这里的Max数组是记录从i到j节点中边权最大值(不是和),从其父节点与新连接的边中比较

    
    
  • 相关阅读:
    调试SQLSERVER (二)使用Windbg调试SQLSERVER的环境设置
    调试SQLSERVER (一)生成dump文件的方法
    SQLSERVER中如何快速比较两张表的不一样
    Leptonica在VS2010中的编译及简单使用举例
    UVALive 3135--Argus+自己定义优先队列的优先规则
    mysql---总体备份和增量备份
    OllyDbg 使用笔记 (十二)
    《TCP/IP具体解释卷2:实现》笔记--IP:网际协议
    blurImage做图片模糊处理报错free(): invalid next size
    docker网络配置方法总结
  • 原文地址:https://www.cnblogs.com/GRedComeT/p/12179482.html
Copyright © 2011-2022 走看看