zoukankan      html  css  js  c++  java
  • Day7

    Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

    Choose k different positive integers a1a2…, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

    “It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

    Since Elina is new to programming, this problem is too difficult for her. Can you help her?

    Input

    The input contains multiple test cases. Each test cases consists of some lines.

    • Line 1: Contains the integer k.
    • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

    Output

    Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

    Sample Input

    2
    8 7
    11 9

    Sample Output

    31

    Hint

    All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

    思路:解同余方程,中国剩余定理,由于每个余数不一定互质,就需要两两合并方程组,给出代码与参考博客:

    typedef long long LL;
    typedef pair<LL, LL> PLL;
    
    const int maxm = 1e5+5;
    
    LL r[maxm], a[maxm];
    
    void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d) {
        if(!b) {
            d = a, x = 1, y = 0;
        } else {
            ex_gcd(b, a%b, y, x, d);
            y -= x*(a/b);
        }
    }
    
    LL inv(LL t, LL p) {
        LL x, y, d;
        ex_gcd(t, p, x, y, d);
        return d == 1?(x%p+p)%p:-1;
    }
    
    LL gcd(LL a, LL b) {
        return b?gcd(b, a%b):a;
    }
    
    PLL linear(LL r[], LL a[], int n) { // x = r[i] (moda[i])
        LL x = 0, m = 1;
        for(int i = 0; i < n; ++i) {
            LL A = m, B = r[i] - x, d = gcd(a[i], A);
            if(B % d != 0) return PLL(0, -1);
            LL t = B/d * inv(A/d, a[i]/d) % (a[i]/d);
            x = x + m*t;
            m *= a[i]/d;
        }
        x = (x % m + m) % m;
        return PLL(x, m);
    }
    
    int main() {
        int n;
        while(scanf("%d", &n) != EOF) {
            for(int i = 0; i < n; ++i) {
                scanf("%lld%lld", &a[i], &r[i]);
            }
            PLL ans = linear(r, a, n);
            if(ans.second == -1) printf("-1
    ");
            else printf("%lld
    ", ans.first);
        }
        return 0;
    }
    View Code

    https://www.cnblogs.com/linyujun/p/5199415.html

    https://blog.csdn.net/acdreamers/article/details/8050018

  • 相关阅读:
    JavaScript操作DOM对象
    QTP(13)
    QTP(12)
    QTP(11)
    QTP(10)
    QTP(9)
    QTP(8)
    QTP(7)
    QTP(6)
    QTP(5)
  • 原文地址:https://www.cnblogs.com/GRedComeT/p/12219633.html
Copyright © 2011-2022 走看看