题目描述
传说很久以前,大地上居住着一种神秘的生物:地精。
地精喜欢住在连绵不绝的山脉中。具体地说,一座长度为N的山脉H可分为从左到右的N段,每段有一个独一无二的高度Hi,其中Hi是1到N之间的正整数。
如果一段山脉比所有与它相邻的山脉都高,则这段山脉是一个山峰。位于边缘的山脉只有一段相邻的山脉,其他都有两段(即左边和右边)。
类似地,如果一段山脉比所有它相邻的山脉都低,则这段山脉是一个山谷。
地精们有一个共同的爱好——饮酒,酒馆可以设立在山谷之中。地精的酒馆不论白天黑夜总是人声鼎沸,地精美酒的香味可以飘到方圆数里的地方。
地精还是一种非常警觉的生物,他们在每座山峰上都可以设立瞭望台,并轮流担当瞭望工作,以确保在第一时间得知外敌的入侵。
地精们希望这N段山脉每段都可以修建瞭望台或酒馆的其中之一,只有满足这个条件的整座山脉才可能有地精居住。
现在你希望知道,长度为N的可能有地精居住的山脉有多少种。两座山脉A和B不同当且仅当存在一个i,使得Ai≠Bi。由于这个数目可能很大,你只对它除以P的余数感兴趣。
输入输出格式
输入格式:
输入文件goblin.in仅含一行,两个正整数N, P。
输出格式:
输出文件goblin.out仅含一行,一个非负整数,表示你所求的答案对P取余之后的结果。
输入输出样例
说明
【数据规模和约定】
对于20%的数据,满足N≤10;
对于40%的数据,满足N≤18;
对于70%的数据,满足N≤550;
对于100%的数据,满足3≤N≤4200,P≤1e9。
1 #include<cstdio> 2 int dp[2][5007],n,p,ans; 3 int main() { 4 scanf("%d%d",&n,&p); 5 dp[0][2]=1; 6 for(int i=3; i<=n; i++) 7 for(int j=2; j<=i; j++) 8 dp[i&1][j]=(dp[(i-1)&1][i-j+1]+dp[i&1][j-1])%p; 9 for(int i=2; i<=n; i++) 10 ans=(ans+dp[n&1][i])%p; 11 printf("%d ",(ans*2)%p); 12 return 0; 13 }
如若重来,你我不羡鸳鸯不羡仙。