zoukankan      html  css  js  c++  java
  • 【Codeforces】【161Div2】

    【题目来源】http://www.codeforces.com/contest/263

    【A. Beautiful Matrix】

    【解析】模拟即可。按照题目的意思,找到1所在的位置(x, y),然后输出abs(x - 3) + abs(y - 3)。

     1 #include <iostream>
     2 #include <cmath>
     3 
     4 using namespace std;
     5 
     6 int X, Y;
     7 
     8 int main()
     9 {
    10     for (int i = 1; i <= 5; i ++)
    11         for (int j = 1, a; j <= 5; j ++)
    12             {
    13                 cin >> a;
    14                 if (a) X = i, Y = j;
    15             }
    16     cout << abs(3 - X) + abs(3 - Y) << endl;
    17     return 0;
    18 }

    【B. Squares】

    【解析】贪心。每个正方形都是以(0,0)和(ai,ai)为顶点的,因此将输入的数据按照ai进行排序,输出(A[N - K + 1], 0)即是符合题意的坐标。

     1 #include <iostream>
     2 #include <algorithm>
     3 
     4 using namespace std;
     5 
     6 int N, K, A[51];
     7 
     8 int main()
     9 {
    10     cin >> N >> K;
    11     for (int i = 1; i <= N; i ++) cin >> A[i];
    12     sort(A + 1, A + 1 + N);
    13     if (N - K < 0) cout << -1 << endl;
    14     else cout << A[N - K + 1] << " " << 0 << endl;
    15     return 0;
    16 }

    【C. Circle of Numbers】

    【解析】枚举。根据题目的意思可得:对于每个点,有4个点与之相连;对于2个相邻的点,它们的公共点有2个。首先,通过枚举决定前3个数进入队列,接着,取出队列的末尾2个数,由这2个数决定的公共点必然有一个在队列中,另一个不在队列中,把不在队列中的数放进队列。接着重复以上过程,直到所有的数字都能够合法地进入队列,那么就说明找到了这样的环,否则不存在这样的环。另外,读入数据的时候,如果有某个数的度不为4,那么直接就可以判断不存在这样的环。

      1 #include <cstdio>
      2 #include <cstring>
      3 #include <deque>
      4 
      5 //#define FILE_IO
      6 
      7 using namespace std;
      8 
      9 const int Maxn = 100001;
     10 
     11 struct edge
     12 {
     13     int v;
     14     edge* next;
     15     edge(int _v, edge* _next) : v(_v), next(_next) {}
     16 }* E[Maxn];
     17 
     18 bool hash[Maxn];
     19 int N, Cnt, Ans[Maxn], Deg[Maxn];
     20 deque <int> Q;
     21 
     22 void Print()
     23 {
     24     for (int i = 1; i < N; i ++) printf("%d ", Ans[i]);
     25     printf("%d\n", Ans[N]);
     26 }
     27 
     28 int Find(int x, int y)
     29 {
     30     for (edge* j = E[x]; j; j = j -> next)
     31         for (edge* k = E[y]; k; k = k -> next)
     32             if ((hash[j -> v] == false) && (j -> v == k -> v)) return j -> v;
     33     return 0;
     34 }
     35 
     36 bool Work(int x, int y)
     37 {
     38     Q.clear(); Cnt = 0; memset(hash, 0, sizeof(hash));
     39     Q.push_back(x), Q.push_back(y);
     40     Ans[++ Cnt] = 1; Ans[++ Cnt] = x; Ans[++ Cnt] = y;
     41     hash[1] = hash[x] = hash[y] = true;
     42     while (Q.size())
     43     {
     44         int x = Q.front(); Q.pop_front();
     45         int y = Q.front(); Q.pop_front();
     46         int z = Find(x, y);
     47         if (z)
     48         {
     49             Q.push_back(y); Q.push_back(z); hash[z] = true;
     50             Ans[++ Cnt] = z;
     51         }
     52         else if (Cnt == N) return true;
     53     }
     54     return false;
     55 }
     56 
     57 bool Check(int x, int y)
     58 {
     59     for (edge* j = E[x]; j; j = j -> next)
     60         if (j -> v == y) return true;
     61     return false;
     62 }
     63 
     64 bool Solve()
     65 {
     66     int tmp[5], tcnt = 0;
     67     for (edge* j = E[1]; j; j = j -> next) tmp[++ tcnt] = j -> v;
     68     for (int i = 1; i <= 4; i ++)
     69         for (int j = 1; j <= 4; j ++)
     70         {
     71             if (i == j) continue;
     72             int x = tmp[i], y = tmp[j];
     73             if (!Check(x, y)) continue;
     74             if (Work(x, y)) return true;
     75         }
     76     return false;
     77 }
     78 
     79 void edgeAdd(int x, int y)
     80 {
     81     E[x] = new edge(y, E[x]);
     82     E[y] = new edge(x, E[y]);
     83 }
     84 
     85 bool Init()
     86 {
     87     scanf("%d", &N);
     88     for (int i = 1, x, y; i <= N * 2; i ++)
     89     {
     90         scanf("%d%d", &x, &y);
     91         Deg[x] ++; Deg[y] ++;
     92         edgeAdd(x, y);
     93     }
     94     for (int i = 1; i <= N; i ++)
     95         if (Deg[i] != 4) return false;
     96     return true;
     97 }
     98 
     99 int main()
    100 {
    101     #ifdef FILE_IO
    102     freopen("test.in", "r", stdin);
    103     #endif // FILE_IO
    104     if ((!Init()) || (!Solve())) printf("-1\n");
    105     else Print();
    106     return 0;
    107 }

    【D. Cycle in Graph】

    【解析】图论。从1个点进行DFS,当遇到未标记的点时候标记为已走。直到DFS到某个点,会发现所有和它相连的点都已经被标记上了。这说明了和它相连的这些点都已经存在于前面DFS的路径中了,由于这个点的度至少为K,也就是说,从已走路径中最早出现的和这个点相连的那个点开始,一直到当前的这个点结束,至少存在一个长度为K+1的圈。

     1 #include <cstdio>
     2 #include <climits>
     3 #include <algorithm>
     4 
     5 //#define FILE_IO
     6 
     7 using namespace std;
     8 
     9 const int Maxn = 1e5 + 1;
    10 
    11 struct edge
    12 {
    13     int v;
    14     edge* next;
    15     edge(int _v, edge* _next) : v(_v), next(_next) {}
    16 }* E[Maxn];
    17 
    18 int N, M, K, Cnt, S[Maxn], Visit[Maxn];
    19 
    20 void Solve()
    21 {
    22     S[Visit[1] = ++ Cnt] = 1;
    23     while (1)
    24     {
    25         int i = S[Cnt]; bool flag = false;
    26         for (edge* j = E[i]; j; j = j -> next)
    27         {
    28             int v = j -> v;
    29             if (!Visit[v])
    30             {
    31                 S[Visit[v] = ++ Cnt] = v;
    32                 flag = true;
    33                 break;
    34             }
    35         }
    36         if (!flag)
    37         {
    38             int Min = INT_MAX;
    39             for (edge* j = E[i]; j; j = j -> next)
    40             {
    41                 int v = j -> v; Min = min(Min, Visit[v]);
    42             }
    
    43             printf("%d\n", Cnt - Min + 1);
    44             for (int i = Min; i < Cnt; i ++) printf("%d ", S[i]);
    45             printf("%d\n", S[Cnt]);
    46             return ;
    47         }
    48     }
    49 }
    50 
    51 inline void edgeAdd(int x, int y)
    52 {
    53     E[x] = new edge(y, E[x]);
    54     E[y] = new edge(x, E[y]);
    55 }
    56 
    57 void Init()
    58 {
    59     scanf("%d%d%d", &N, &M, &K);
    60     for (int i = 1, x, y; i <= M; i ++)
    61     {
    62         scanf("%d%d", &x, &y);
    63         edgeAdd(x, y);
    64     }
    65 }
    66 
    67 int main()
    68 {
    69     #ifdef FILE_IO
    70     freopen("test.in", "r", stdin);
    71     #endif // FILE_IO
    72     Init();
    73     Solve();
    74     return 0;
    75 }

    【E. Rhombus】

    【解析】模拟。最没有想到的是这个题目,难度确实不大。模拟即可。不过同样需要处理一些技巧,具体看代码就OK。

     1 #include <cstdio>
     2 
     3 //#define FILE_IO
     4 
     5 using namespace std;
     6 
     7 int N, M, K, Ansx, Ansy;
     8 long long Max, A[1001][1001], Sum[1001][1001];
     9 
    10 void Print()
    11 {
    12     printf("%d %d\n", Ansx, Ansy);
    13 }
    14 
    15 inline long long Count(int x1, int y1, int x2, int y2)
    16 {
    17     return Sum[x2][y2] + Sum[x1 - 1][y1 - 1] - Sum[x2][y1 - 1] - Sum[x1 - 1][y2];
    18 }
    19 
    20 void Solve()
    21 {
    22     int im = N - K + 1, jm = M - K + 1;
    23     for (int i = K; i <= im; ++i)
    24         for (int j = K; j <= jm; ++j)
    25         {
    26             long long tmp = 0;
    27             for (int k = 1; k <= K; ++k)
    28                 tmp += Count(i - K + k, j - k + 1, i + K - k, j + k - 1);
    29             if (tmp >= Max) Max = tmp, Ansx = i, Ansy = j;
    30         }
    31 }
    32 
    33 void Init()
    34 {
    35     scanf("%d%d%d", &N, &M, &K);
    36     for (int i = 1; i <= N; ++i)
    37         for (int j = 1; j <= M; ++j)
    38             scanf("%d", &A[i][j]);
    39     for (int i = 1; i <= N; ++i)
    40         for (int j = 1; j <= M; ++j)
    41             A[i][j] += A[i - 1][j];
    42     for (int i = 1; i <= N; ++i)
    43         for (int j = 1; j <= M; ++j)
    44             Sum[i][j] = Sum[i][j - 1] + A[i][j];
    45 }
    46 
    47 int main()
    48 {
    49     #ifdef FILE_IO
    50     freopen("test.in", "r", stdin);
    51     #endif // FILE_IO
    52     Init();
    53     Solve();
    54     Print();
    55     return 0;
    56 }
  • 相关阅读:
    word20170108逛景点 Sightseeing有用的词和句子
    c# List 分页问题
    VUE界面,this.form.xxx=1赋值后,界面效果没有变化
    SQL Server使用索引视图来实现“物化视图”
    .NET CORE 实现异步处理
    当请求接口提示网络错误Error:Network Error的时候
    SheetJS js-xlsx :js实现导出Excel模板
    增加索引分析
    聚集索引与非聚集索引的总结
    Dynamics CRM-无法识别安全令牌的颁发者,若要接受来自此颁发者的安全令牌,请将 IssuerNameRegistry 配置为返回此颁发者的有效名称
  • 原文地址:https://www.cnblogs.com/GXZC/p/2867784.html
Copyright © 2011-2022 走看看